Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Pest Manag Sci ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738508

RESUMO

BACKGROUND: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS: The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION: This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Arch Virol ; 169(3): 42, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332318

RESUMO

Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.


Assuntos
Beauveria , Micovírus , Vírus de RNA , Vírus , Humanos , Beauveria/genética , RNA de Cadeia Dupla/genética , Filogenia , Genoma Viral , Vírus de RNA/genética , Vírus/genética , Vírus de RNA de Cadeia Dupla/genética , Micovírus/genética , RNA Polimerase Dependente de RNA/genética , RNA Viral/genética , Fases de Leitura Aberta
3.
Pest Manag Sci ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358040

RESUMO

BACKGROUND: Entomophagous fungi (EPF) not only directly kill insect pests, but also colonize plants and improve their resistance against pests. However, most previous research has focused on Beauveria bassiana and Metarhizium anisopliae, and there are few reports on whether other EPF can enhance resistance against pests via endogenous colonization. Herein, an EPF strain was isolated from diseased larvae of Spodoptera litura in a soybean field, and subjected to genome-wide sequencing at the chromosomal level. The pathogenicity of the isolate toward various pest insects was evaluated, and the ability to colonize plants and induce resistance against phytopathogens and insect pests was tested. RESULTS: The purified isolate was identified as M. rileyi and designated MrS1Gz1-1. Biological assays revealed its strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of soil-borne plant disease caused by Sclerotinia sclerotiorum in vitro. It colonized plants as an endophyte via soil application, thereby inducing plant resistance-related genes against phytopathogen infection, and it disrupted the feeding selectivity of S. litura larvae. CONCLUSION: M. rileyi MrS1Gz1-1 has potential as a broad-spectrum microbial control agent that can induce resistance against phytopathogens and insect pests feeding as an endotype. The complete genome provides a valuable resource for exploring host interactions. © 2024 Society of Chemical Industry.

4.
Neuroreport ; 35(3): 191-199, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305110

RESUMO

The underlying mechanisms of information processing for two basic motion types, rotation and flicker, are not fully understood. Rotational and flickering animations at four speeds - 7 frames per second (fps), 8 fps, 11 fps, and 12 fps, respectively - are presented as visual stimuli. The motion-onset visual evoked potentials (VEPs) and steady-state VEPs (SSVEP) elicited by these motion stimuli were compared between the rotation and flicker motion types at time windows of 0-500 ms and 1000-5000 ms post-stimulus, respectively. The standardized low-resolution electromagnetic tomography (sLORETA) source localization was investigated as well. Four motion speeds had no effect on the whole VEP waveform in either the rotation or the flicker groups. Significant differences in motion-onset VEPs and sLORETA source localization were found between the rotation and the flicker motion types at time windows of 200-500 ms post-stimulus. For the time windows of 1000-5000 ms post-stimulus, both the rotation and flicker groups all demonstrated the characteristics of SSVEP, with the peak spectral topographies showing at the four different frequencies, which correspond to the four motion speeds. Additionally, a higher power of spectral topography at each of the four motion speeds was found in the rotation relative to the flicker stimulation. The perceptual and cognitive processes are distinct for two types of motion: rotation and flicker. In terms of motion-onset VEPs and the characteristics of SSVEP, rotating visual stimulation is superior to flicker stimulation and may be more appropriate for clinical and engineering applications.


Assuntos
Cognição , Potenciais Evocados Visuais , Rotação , Estimulação Luminosa/métodos , Exame Neurológico , Eletroencefalografia/métodos
5.
Gene ; 902: 148160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219874

RESUMO

The Qinghai-Tibet Plateau is one of the areas the richest in salt lakes and Artemia sites. As a result of climate warming and wetting, the areas of salt lakes on the plateau have been increasing, and the salinities have decreased considerably since 1990s. However, the impact of salinity change on the genetic diversity of Artemia is still unknown. Kyêbxang Co is the highest (4620 m above sea level) salt lake currently with commercial harvesting of Artemia resting eggs in the world, and harbors the largest Artemia population on the plateau. Its salinity had dropped from âˆ¼67 ppt in 1998 to âˆ¼39 ppt in 2019. Using 13 microsatellite markers and the mitochondrial cytochrome oxidase submit I (COI) gene, we analyzed the temporal changes of genetic diversity, effective population size and genetic structure of this Artemia population based on samples collected in 1998, 2007 and 2019. Our results revealed a steady decline of genetic diversity and significant genetic differentiation among the sampling years, which may be a consequence of genetic drift and the selection of decreased salinity. A decline of effective population size was also detected, which may be relative to the fluctuation in census population size, skewed sex ratio, and selection of the declined salinity. In 2007 and 2019, the Artemia population showed an excess of heterozygosity and significant deviation from Hardy-Weinberg Equilibrium (p < 0.001), which may be associated with the heterozygote advantage under low salinity. To comprehensively understand the impact of climate warming and wetting on Artemia populations on the plateau, further investigation with broad and intensive sampling are needed.


Assuntos
Artemia , Lagos , Humanos , Animais , Tibet , Lagos/química , Artemia/genética , Anostraca , Mudança Climática , Salinidade , Altitude , Variação Genética
6.
Infect Med (Beijing) ; 2(3): 153-166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38073883

RESUMO

Mpox (monkeypox) virus (MPXV), which causes a mild smallpox-like disease, has been endemic in Africa for several decades, with sporadic cases occurring in other parts of the world. However, the most recent outbreak of mpox mainly among men that have sex with men has affected several continents, posing serious global public health concerns. The infections exhibit a wide spectrum of clinical presentation, ranging from asymptomatic infection to mild, severe disease, especially in immunocompromised individuals, young children, and pregnant women. Some therapeutics and vaccines developed for smallpox have partial protective and therapeutic effects against MPXV historic isolates in animal models. However, the continued evolution of MPXV has produced multiple lineages, leading to significant gaps in the knowledge of their pathogenesis that constrain the development of targeted antiviral therapies and vaccines. MPXV infections in various animal models have provided a central platform for identification and comparison of diseased pathogenesis between the contemporary and historic isolates. In this review, we discuss the susceptibility of various animals to MPXV, and describe the key pathologic features of rodent, rabbit and nonhuman primate models. We also provide application examples of animal models in elucidating viral pathogenesis and evaluating effectiveness of vaccine and antiviral drugs. These animal models are essential to understand the biology of MPXV contemporary isolates and to rapidly test potential countermeasures. Finally, we list some remaining scientific questions of MPXV that can be resolved by animal models.

7.
Biology (Basel) ; 12(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998005

RESUMO

Repeat-mediated deletion (RMD) rearrangement is a major source of genome instability and can be deleterious to the organism, whereby the intervening sequence between two repeats is deleted along with one of the repeats. RMD rearrangement is likely induced by DNA double-strand breaks (DSBs); however, it is unclear how the complexity of DSBs influences RMD rearrangement. Here, a transgenic Escherichia coli strain K12 MG1655 with a lacI repeat-controlled amp activation was used while taking advantage of particle irradiation, such as proton and carbon irradiation, to generate different complexities of DSBs. Our research confirmed the enhancement of RMD under proton and carbon irradiation and revealed a positive correlation between RMD enhancement and LET. In addition, RMD enhancement could be suppressed by an intermolecular homologous sequence, which was regulated by its composition and length. Meanwhile, RMD enhancement was significantly stimulated by exogenous λ-Red recombinase. Further results investigating its mechanisms showed that the enhancement of RMD, induced by particle irradiation, occurred in a RecA-dependent manner. Our finding has a significant impact on the understanding of RMD rearrangement and provides some clues for elucidating the repair process and possible outcomes of complex DNA damage.

8.
Virol J ; 20(1): 255, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924080

RESUMO

BACKGROUND: The entomogenous fungus Beauveria bassiana is used as a biological insecticide worldwide, wild B. bassiana strains with high pathogenicity in the field play an important role in controlling insect pests via not only screening of highly virulent strains but also natural infection, but the pathogenicity degeneration of wild strains severely affected aforementioned effects. Previous studies have showed that multiple factors contributed to this phenomenon. It has been extensively proved that the mycovirus infection caused hypovirulence of phytopathogenic fungi, which has been used for plant disease biocontrol. However, it remains unknown whether the mycovirus epidemics is a key factor causing hypovirulence of B. bassiana naturally in the field. METHODS: Wild strains of B. bassiana were collected from different geographic locations in Jilin Province, China, to clarify the epidemic and diversity of the mycoviruses. A mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) we have previously identified was employed to clarify its impact on the pathogenicity of host fungi B. bassiana against the larvae of insect pest Ostrinia furnacalis. The serological analysis was conducted by preparing polyclonal antibody against a BbCV2 coat protein, to determine whether it can dissociate outside the host fungal cells and subsequently infect new hosts. Transcriptome analysis was used to reveal the interactions between viruses and hosts. RESULTS: We surprisingly found that the mycovirus BbCV2 was prevalent in the field as a core virus in wild B. bassiana strains, without obvious genetic differentiation, this virus possessed efficient and stable horizontal and vertical transmission capabilities. The serological results showed that the virus could not only replicate within but also dissociate outside the host cells, and the purified virions could infect B. bassiana by co-incubation. The virus infection causes B. bassiana hypovirulence. Transcriptome analysis revealed decreased expression of genes related to insect epidermis penetration, hypha growth and toxin metabolism in B. bassiana caused by mycovirus infection. CONCLUSION: Beauveria bassiana infected by hypovirulence-associated mycovirus can spread the virus to new host strains after infecting insects, and cause the virus epidemics in the field. The findings confirmed that mycovirus infection may be an important factor affecting the pathogenicity degradation of B. bassiana in the field.


Assuntos
Beauveria , Micovírus , Animais , Virulência/genética , Micovírus/genética , Beauveria/genética , Perfilação da Expressão Gênica , Larva
9.
Microorganisms ; 11(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37894133

RESUMO

The Tibetan Plateau, known as the "Roof of the World" and "The Third Pole", harbors numerous saline lakes primarily distributed in the Northern Tibetan Plateau. However, the challenging conditions of high altitude, low oxygen level, and harsh climate have limited investigations into the actinobacteria from these saline lakes. This study focuses on investigating the biodiversity and bioactive secondary metabolites of cultivable actinobacteria isolated from the sediments of four saline lakes on the Northern Tibetan Plateau. A total of 255 actinobacterial strains affiliated with 21 genera in 12 families of 7 orders were recovered by using the pure culture technique and 16S rRNA gene phylogenetic analysis. To facilitate a high-throughput bioactivity evaluation, 192 isolates underwent OSMAC cultivation in a miniaturized 24-well microbioreactor system (MATRIX cultivation). The antibacterial activity of crude extracts was then evaluated in a 96-well plate antibacterial assay. Forty-six strains demonstrated antagonistic effects against at least one tested pathogen, and their underlying antibacterial mechanisms were further investigated through a dual-fluorescent reporter assay (pDualrep2). Two Streptomyces strains (378 and 549) that produce compounds triggering DNA damage were prioritized for subsequent chemical investigations. Metabolomics profiling involving HPLC-UV/vis, UPLC-QTOF-MS/MS, and molecular networking identified three types of bioactive metabolites belonging to the aromatic polyketide family, i.e., cosmomycin, kidamycin, and hedamycin. In-depth analysis of the metabolomic data unveiled some potentially novel anthracycline compounds. A genome mining study based on the whole-genome sequences of strains 378 and 549 identified gene clusters potentially responsible for cosmomycin and kidamycin biosynthesis. This work highlights the effectiveness of combining metabolomic and genomic approaches to rapidly identify bioactive chemicals within microbial extracts. The saline lakes on the Northern Tibetan Plateau present prospective sources for discovering novel actinobacteria and biologically active compounds.

10.
Front Microbiol ; 14: 1227269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664126

RESUMO

Introduction: Entomopathogenic fungi (EPF) can colonize and establish symbiotic relationships with plants as endophytes. Recently, EPF have been reported to suppress plant pathogens and induce plant resistance to diseases. However, the potential mechanisms via which EPF as endophytes control major plant diseases in situ remain largely unknown. Methods: Pot and field experiments were conducted to investigate the mechanisms via which an EPF, Beauveria bassiana, colonizes tomato, under Botrytis cinerea infection stress. B. bassiana blastospores were inoculated into tomato plants by root irrigation. Tomato resistance to tomato gray mold caused by B. cinerea was evaluated by artificial inoculation, and B. bassiana colonization in plants and rhizosphere soil under B. cinerea infection stress was evaluated by colony counting and quantitative PCR. Furthermore, the expression levels of three disease resistance-related genes (OXO, CHI, and atpA) in tomato leaves were determined to explore the effect of B. bassiana colonization on plant disease resistance performance in pot experiments. Results: B. bassiana colonization could improve resistance of tomato plants to gray mold caused by B. cinerea. The incidence rate, lesion diameter, and disease index of gray mold decreased in both the pot and field experiments following B. bassiana colonization. B. bassiana was more likely to accumulate in the pathogen infected leaves, while decreasing in the rhizosphere soil, and induced the expression of plant resistance genes, which were up-regulated in leaves. Discussion: The results indicated that plants could "recruit" B. bassiana from rhizosphere soil to diseased plants as directional effects, which then enhanced plant growth and resistance against pathogens, consequently inhibiting pathogen infection and multiplication in plants. Our findings provide novel insights that enhance our understanding of the roles of EPF during pathogen challenge.

11.
Int J Biochem Mol Biol ; 14(4): 76-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736388

RESUMO

BACKGROUND: The diverse nature of carbohydrate structures and linkages requires a variety of enzymes responsible for sugar degradation. The E. coli periplasmic protein encoded by the bglX gene has been assigned to glycoside hydrolase family 3 and is predicted to function as a ß-glucosidase. OBJECTIVES: We investigated the catalytic properties of the E. coli protein BglX and identified two functionally important amino acid residues. METHODS: The bglX gene was cloned into a pET20b(+) vector, and three mutants, D111N, D287G, and E293Q, were generated using site-directed mutagenesis. Kinetic studies were performed on the wild-type and mutant enzymes. RESULTS: Substrate specificity tests indicated that the BglX enzyme hydrolyzes ß-glycosidic bonds in nitrophenyl-ß-glycosides and demonstrates greater activity towards galactose-containing substrates compared to glucose derivatives. Monomeric glucose and galactose inhibit enzyme activity to a different degree in a substrate-dependent manner. In addition, BglX can hydrolyze lactose but not cellobiose, maltose, or laminarin. Subsequently, E. coli cells overexpressing active BglX have a growth advantage on minimal media supplemented with lactose as a carbon source. Mutation of D287 or D111 residues negatively affected the activity of BglX indicating their involvement in catalysis. Overexpression of BglX by E. coli cells did not increase biofilm formation. CONCLUSIONS: The low activity towards glucose-containing substrates and significantly elevated activity towards galactosides suggests that ß-glucosidase activity may not be the primary function of the BglX enzyme.

12.
Ecotoxicol Environ Saf ; 265: 115526, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769581

RESUMO

The minimally invasive biomarkers that can facilitate a rapid dose assessment are valuable for the early medical treatment when accidental or occupational radiation exposure happens. Our previous proteomic research identified one kind of circulating protein, Insulin-like Growth Factor Binding Protein 3 (IGFBP-3), which showed a significant increase after total body exposure of mice to carbon ions and X-rays. However, several critical issues such as the responses to diverse radiation, the origin and underlying mechanism in radiation response obstruct the utilization of circulating IGFBP-3 as a reliable radiation biomarker. In this study, mice were subjected to total or partial body irradiation with carbon ions, protons or X-rays, or treated with chloroform as a comparison. The level of IGFBP-3 in serum and different organs were measured via Enzyme Linked Immunosorbent Assay (ELISA), Western blot (WB) and Immunohistochemistry (IHC). A significant increase of IGFBP-3 was discovered in serum and liver tissue post-irradiation with three kinds of radiation, but absent when challenged with chloroform. Likewise, a similar response was also observed in blood samples from patients receiving radiotherapy. Moreover, the effect of radiation on three main hepatic cells was investigated, the findings indicated that IGFBP-3 could be detected in the culture medium of Kupffer cells (MKC) alone and was elevated in cells and cultured medium of MKC post-irradiation. Additionally, we observed a co-expression effect between P53 and IGFBP-3 in liver tissues and MKC post-irradiation. Along with down-regulation of Trp53 by siRNA, the response of IGFBP-3 to radiation was attenuated. The present study demonstrated that circulating IGFBP-3 could be a promising universal biomarker for complex environmental radiation exposure, and the upregulation of IGFBP-3 is attributed to the MKC in a P53-dependent manner. Circulating IGFBP-3 assays would offer rapid, convenient and effective dose and toxicity assessment methods in occupational exposure or radiation disaster management.

13.
Neuroreport ; 34(14): 693-702, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37556590

RESUMO

The processing of feedback is essential for learning, error detection, and correction. However, the underlying mechanisms of the feedback's characteristics, such as its reliability, valence, and expectations in the processing of error information, are not completely clear. The two degrees of feedback reliability, reliable feedback and unreliable feedback, respectively, were established by manipulating the feedback valence. The time course of event-related potentials (ERP) during the arrow flanker tasks was used to investigate the effects of feedback reliability and responses on brain activity. Three ERP components, the error-related negativity (ERN), feedback-related negativity (FRN), and P3, respectively, were measured. The impacts of feedback reliability and responses on ERN, FRN, and P3 had a different profile. Specifically, ERN and P3 are associated with the responses but not the feedback reliability, while FRN is associated with feedback reliability and feedback expectations but not the responses. The ERN, FRN, and P3 reflect distinct cognitive processes in the processing of error information.


Assuntos
Potenciais Evocados , Recompensa , Retroalimentação , Reprodutibilidade dos Testes , Potenciais Evocados/fisiologia , Aprendizagem , Retroalimentação Psicológica/fisiologia , Eletroencefalografia , Encéfalo/fisiologia
14.
Fungal Biol ; 127(3): 958-967, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36906386

RESUMO

Polymycoviridae is a recently established family of mycoviruses. Beauveria bassiana polymycovirus 4 (BbPmV-4) was previously reported. However, the effect of the virus on host fungus B. bassiana was not clarified. Here, a comparison between virus-free and virus-infected isogenic lines of B. bassiana revealed that BbPmV-4 infection of B. bassiana changes morphology and could lead to decreases in conidiation and increases in virulence against Ostrinia furnacalis larvae. The differential expression of genes between virus-free and virus-infected strains was compared by RNA-Seq and was consistent with the phenotype of B. bassiana. The enhanced pathogenicity may be related to the significant up-regulation of genes encoding mitogen activated protein kinase, cytochrome P450, and polyketide synthase. The results enable studies of the mechanism of interaction between BbPmV-4 and B. bassiana.


Assuntos
Beauveria , Mariposas , Animais , Transcriptoma , Perfilação da Expressão Gênica , Mariposas/microbiologia , Virulência
15.
J Nutr ; 153(4): 924-939, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806451

RESUMO

Long-term exposure to adverse life events that provoke acute or chronic psychological stress (hereinafter "stress") can negatively affect physical health and even increase susceptibility to psychological illnesses, such as anxiety and depression. As a part of the hypothalamic-pituitary-adrenal axis, corticotropin-releasing factor (CRF) released from the hypothalamus is primarily responsible for the stress response. Typically, CRF disrupts the gastrointestinal system and leads to gut microbiota dysbiosis, thereby increasing risk of functional gastrointestinal diseases, such as irritable bowel syndrome. Furthermore, CRF increases oxidative damage to the colon and triggers immune responses involving mast cells, neutrophils, and monocytes. CRF even affects the differentiation of intestinal stem cells (ISCs), causing enterochromaffin cells to secrete excessive amounts of 5-hydroxytryptamine (5-HT). Therefore, stress is often accompanied by damage to the intestinal epithelial barrier function, followed by increased intestinal permeability and bacterial translocation. There are multi-network interactions between the gut microbiota and stress, and gut microbiota may relieve the effects of stress on the body. Dietary intake of probiotics can provide energy for ISCs through glycolysis, thereby alleviating the disruption to homeostasis caused by stress, and it significantly bolsters the intestinal barrier, alleviates intestinal inflammation, and maintains endocrine homeostasis. Gut microbiota also directly affect the synthesis of hormones and neurotransmitters, such as CRF, 5-HT, dopamine, and norepinephrine. Moreover, the Mediterranean diet enhances the stress resistance to some extent by regulating the intestinal flora. This article reviews recent research on how stress damages the gut and microbiota, how the gut microbiota can improve gut health by modulating injury due to stress, and how the diet relieves stress injury by interfering with intestinal microflora. This review gives insight into the potential role of the gut and its microbiota in relieving the effects of stress via the gut-brain axis.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/microbiologia , Serotonina , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico , Homeostase
16.
Appl Biochem Biotechnol ; 195(6): 3628-3640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36648604

RESUMO

C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 µg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 µg/mL (701.40 ± 21.51 µg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.


Assuntos
Carotenoides , Halorubrum , Carotenoides/metabolismo , Halorubrum/química , Halorubrum/metabolismo , Fermentação , Sais , Meios de Cultura/química
17.
Front Microbiol ; 14: 1284276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260878

RESUMO

Introduction: Aspergillus nomiae is known as a pathogenic fungus that infects humans and plants but has never been reported as an entomophagous fungus (EPF) that can provide other functions as an endotype. Methods: A strain of EPF was isolated and identified from diseased larvae of Spodoptera litura in a soybean field and designated AnS1Gzl-1. Pathogenicity of the strain toward various insect pests was evaluated, especially the ability to colonize plants and induce resistance against phytopathogens and insect pests. Results: The isolated EPF strain AnS1Gzl-1 was identified as A. nomiae; it showed strong pathogenicity toward five insect pests belonging to Lepidoptera and Hemiptera. Furthermore, the strain inhibited the growth of Sclerotinia sclerotiorum in vitro, a causal agent of soil-borne plant disease. It colonized plants as an endophyte via root irrigation with a high colonization rate of 90%, thereby inducing plant resistance against phytopathogen infection, and disrupting the feeding selectivity of S. litura larvae. Discussion: This is the first record of a natural infection of A. nomiae on insects. A. nomiae has the potential to be used as a dual biocontrol EPF because of its ability to not only kill a broad spectrum of insect pests directly but also induce resistance against phytopathogens via plant colonization.

18.
Front Public Health ; 10: 1031743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388350

RESUMO

Exposure to environmental ionizing radiation (IR) is ubiquitous, and large-dose exposure to IR is known to cause DNA damage and genotoxicity which is associated with an increased risk of cancer. Whether such detrimental effects are caused by exposure to low-dose IR is still debated. Therefore, rapid and early estimation of absorbed doses of IR in individuals, especially at low levels, using radiation response markers is a pivotal step for early triage during radiological incidents to provide adequate and timely clinical interventions. However, there is currently a crucial shortage of methods capable of determining the extent of low-dose IR exposure to human beings. The phosphorylation of histone H2AX on serine 139 (designated γ-H2AX), a classic biological dosimeter, can be used to evaluate the DNA damage response. We have developed an estimation assay for low-level exposure to IR based on the mass spectrometry quantification of γ-H2AX in blood. Human peripheral blood lymphocytes sensitive to low-dose IR, maintaining low temperature (4°C) and adding enzyme inhibitor are proven to be key steps, possibly insuring that a stable and marked γ-H2AX signal in blood cells exposed to low-dose IR could be detected. For the first time, DNA damage at low dose exposures to IR as low as 0.01 Gy were observed using the sensitive variation of γ-H2AX with high throughput mass spectrometry quantification in human peripheral blood, which is more accurate than the previously reported methods by virtue of isotope-dilution mass spectrometry, and can observe the time effect of DNA damage. These in vitro cellular dynamic monitoring experiments show that DNA damage occurred rapidly and then was repaired slowly over the passage of post-irradiation time even after exposure to very low IR doses. This assay was also used to assess different radiation exposures at the in vitro cellular level. These results demonstrate the potential utility of this assay in radiation biodosimetry and environmental risk assessment.


Assuntos
Linfócitos , Radiação Ionizante , Humanos , Relação Dose-Resposta à Radiação , Linfócitos/efeitos da radiação , Dano ao DNA , Espectrometria de Massas
19.
Neuroreport ; 33(18): 777-785, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36367794

RESUMO

OBJECTIVE: The Sander illusion and the horizontal-vertical (H-V) illusion are both size and orientation geometric-optical illusions. The Sander geometric figures can be simply regarded as being made up of surrounding frames and inner targeted line segments. Similarly, H-V illusory geometric figures are made up of the targeted line segments. The role of surrounding frames and inner targeted line segments in the perception and cognition of geometric-optical illusions is not well understood. METHODS: The time course of event-related potentials (ERP) and the ERP-based standardized low-resolution electromagnetic tomography (sLORETA) source localization were investigated in the Sander illusion and the H-V illusion, which had the same length as the targeted line segments, respectively. The P1, N1, P2, N2 and P3 components of the ERP were focused and measured. RESULTS: The ERP results demonstrated that the existence of surrounding frames in the Sander illusions-induced significant alterations in the P1, N1, P2, N2 and P3 components, compared with the H-V illusion without surrounding frames. In the Sander illusion, different tilted line segments and surrounding frames resulted in significant differences in the P2, N2 and P3 components. The sLORETA results also demonstrated brain activities of source localization as a function of the surrounding frames and the tilted inner line segments. CONCLUSIONS: These findings implicate that the perceptual and cognitive processes of the geometric-optical illusions are correlated to the surrounding frames/background, as well as the orientation/direction of inner targeted line segments in geometric figures.


Assuntos
Ilusões , Ilusões Ópticas , Humanos , Potenciais Evocados
20.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293350

RESUMO

Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.


Assuntos
Actinas , Receptores de Progesterona , Gravidez , Feminino , Camundongos , Animais , Actinas/metabolismo , Receptores de Progesterona/metabolismo , Progesterona/metabolismo , RNA Interferente Pequeno/metabolismo , Faloidina/metabolismo , Implantação do Embrião , Útero/metabolismo , Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...