Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(14): 5461-5462, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410477

Assuntos
Ciência
2.
Nanomaterials (Basel) ; 11(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199059

RESUMO

In the past two decades, we have learned a great deal about self-assembly of dendritic metal oxide structures, partially inspired by the nanostructures mimicking the aesthetic hierarchical structures of ferns and corals. The self-assembly process involves either anisotropic polycondensation or molecular recognition mechanisms. The major driving force for research in this field is due to the wide variety of applications in addition to the unique structures and properties of these dendritic nanostructures. Our purpose of this minireview is twofold: (1) to showcase what we have learned so far about how the self-assembly process occurs; and (2) to encourage people to use this type of material for drug delivery, renewable energy conversion and storage, biomaterials, and electronic noses.

5.
Faraday Discuss ; 227: 125-140, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295344

RESUMO

2-Dimensional (2D) metal oxides have many potential industrial applications including heterogeneous catalysis, water splitting, renewable energy conversion, supercapacitor applications, biomaterials, gas separation and gas storage. Herein we report a simple and scalable method for the preparation of 2D TiO2 nanostructures by reaction of titanium isopropoxide with acetic acid at 333 K in isopropanol, followed by calcination at 673 K to remove the organic ligands. Both the products and reaction intermediates have been studied using electron microscopy, X-ray diffraction, N2 physisorption, nuclear magnetic resonance, thermogravimetric analysis, and X-ray photoelectron, Raman, and infrared spectroscopy. The anisotropic condensation of the planar Ti6O4(OiPr)8(OAc)8 complex is believed to be responsible for the formation of the 2D structure, where OiPr and OAc represent isopropoxide and acetate ligands, respectively. This research demonstrates that the metal complexes are promising building blocks for desired architectures, and the self-assembly of an acetate bidentate ligand is a versatile tool for manipulating the shape of final products.

6.
Nanoscale ; 12(35): 17971-17981, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32705109

RESUMO

1D and 2D metal oxide nanostructures are important for potential applications in alternative energy, batteries, supercapacitors, catalysts, biomaterials, and electronic nanodevices. Many current approaches for making the desired nanomaterials require multiple steps, which are often exotic and complex for production on a commercial scale. In contrast, the sol-gel reactions between metal alkoxides and organic acids have emerged as a simple protocol for producing metal oxides and inorganic/organic hybrid materials with a controllable 1D or 2D architecture. Our knowledge of this process continues to evolve through the fundamental goal of designing a desired nanostructure from the corresponding molecular building blocks. Our research was driven by the discovery of various morphologies by fine-tuning the synthesis parameters, such as the reaction temperature and molar ratio of the reactants, as well as switching solvents. These discoveries lead to several quesions: What are the building blocks of the 1D and 2D nanostructures and how does the self-assembly occur? What are the reaction kinetics and the mechanisms of nanostructure formation? What role does the solvent play in the assembly process? What are the effects of reaction temperature and pressure? How can we manipulate the nanostructure-for example, the parallel growth of 1D semiconductors-from a substrate surface? And lastly, what are the industrial applications of macroporous aerogels and xerogels? This minireview will highlight documented research accounts to answer these questions.

7.
Langmuir ; 32(36): 9197-205, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27552141

RESUMO

Selective capture of thiols from a synthetic hydrogen sulfide containing mixture using supported nanogold materials has been explored for the potential removal of thiols from sour gas production fluids. In this research, TiO2-, Al2O3-, SiO2-, and ZnO-supported gold nanoparticles have been studied for their usage as regeneratable adsorbents to capture CH3SH, C2H5SH, and i-C3H7SH. Au/TiO2 and Au/Al2O3 showed promising properties for removing the thiols efficiently from a gas-phase mixture; however, Au/Al2O3 did catalyze some undesirable side reactions, e.g., carbonyl sulfide formation. It was found that a mild temperature of T = 200 °C was sufficient for regeneration of either Au/TiO2 or Au/Al2O3 adsorbent. The metal oxide mesopores played an important role for accommodating gold particles and chemisorption of the thiols, where smaller pore sizes were found to inhibit the agglomeration/growth of gold particles. The nature of thiol adsorption and the impact of multiple adsorption-desorption cycles on the adsorbents have been studied using electron microscopy, XPS, XRD, GC, and physi/chemiadsorption analyses.

9.
J Sep Sci ; 33(11): 1604-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20373296

RESUMO

The search for a method to fabricate monolithic inorganic columns has attracted significant recent attention due to their unique ability in separation applications of various biomolecules. Silica and polymer based monolithic columns have been prepared, but titania and other metal oxide monoliths have been elusive, primarily due to their fragility. This article describes a new approach for preparing nanostructured titania based columns, which offer better performance over conventional particle packed columns for separating a wide variety of biomolecules including phosphopeptides. TiO(2) monolithic aerogels were synthesized in separation columns using in situ sol-gel reactions in supercritical carbon dioxide (scCO(2)) followed by calcination, and compared to those prepared in heptanes. The characterization results show that scCO(2) is a better solvent for the sol-gel reactions, providing lower shrinkage with the anatase TiO(2) monolith composed of nanofibers with very high surface areas. The monolithic columns show the ability to isolate phosphopeptides with little flow resistance compared to conventional titania particle based microcolumns.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/instrumentação , Titânio/química , Técnicas de Química Analítica , Cromatografia com Fluido Supercrítico/métodos , Géis , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Transição de Fase , Fosfopeptídeos/química , Pós , Solventes/química , Temperatura , Difração de Raios X
10.
Water Res ; 43(18): 4499-506, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19709713

RESUMO

A comparative study on the photocatalytic activities of four different catalysts, P-25 TiO(2), TiO(2) nanofibers, tin-doped TiO(2) nanofibers under UV light irradiation at 350 nm, and coumarin (C-343) coated TiO(2) nanofibers at 436 nm light emitting diodes (LED) is reported. Catalysts performance has been compared based on their reflectance spectrum and activity. A common water contaminant 4-chlorophenol was used as a substrate to compare the activity of the different catalysts under both direct and dye sensitized conditions. Results indicated that amongst the four different catalysts the activity of P-25 was the highest. However the activity of C-343 coated TiO(2) nanofibers in the LED (436 nm) based reactor was competitive. Identification of reaction intermediates implied that the reaction pathways under UV (band gap) and visible (dye sensitized) irradiation were different. Nonetheless, ring opening took place in all reactions with both maleic and dihydroxymaleic have been identified as intermediates. The study indicates that ordered arrays of TiO(2) irradiated by panels of arrays of low cost high intensity LEDs might be used for the design of reactors. The near monochromaticity, long life, and operation under direct currents are advantages of using LEDs.


Assuntos
Luz , Nanofibras/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Catálise/efeitos da radiação , Clorofenóis/química , Cumarínicos/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Estrutura Molecular , Nanofibras/ultraestrutura , Processos Fotoquímicos/efeitos da radiação , Fotoquímica , Espectrofotometria/métodos , Compostos de Estanho/química
11.
Langmuir ; 25(6): 3748-54, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19231832

RESUMO

Direct sol-gel reactions in supercritical CO2 (scCO2) have attracted significant interest for synthesizing nanomaterials by reacting alkoxides with a carboxylic acid. In this study, the hydrolysis of silicon alkoxides (TEOS or TMOS) was carried out using scCO2 as the solvent to generate silica nanoparticles within the matrix of polyethylene for the synthesis of polymeric nanocomposites. This methodology provides advantages of combining the sol-gel reactions and drying into a one-step process for producing polymer nanocomposites. The synthesized polymer silica composites were characterized by SEM, FTIR, and XPS. When the TEOS loading was below 10 wt % Si content, nanometer-sized silica particles were formed that were well dispersed within the polyethylene matrix. The mechanism of the silicon alkoxides reacting with acetic acid in scCO2 was further studied using online GC-MS and offline 13C NMR. Oligomer structures with a bridging methoxyl group between the two silicon atoms and the acetate monodentate were observed. This study suggests a new sol-gel pathway in scCO2 that is different from the hydrolysis-condensation reactions using the conventional sol-gel process.

12.
Langmuir ; 23(7): 3988-95, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17316031

RESUMO

Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Methacrylic acid (MA), a functionalization agent that can chemically link TiO2 nanomaterials (n-TiO2) and polymer matrix, was used to modify the surface of n-TiO2 using a Ti-carboxylic coordination bond. Then, the double bond in MA was copolymerized with methyl methacrylate (MMA) to form a n-TiO2-PMMA nanocomposite. The resulting n-TiO2-PMMA nanocomposite materials were characterized by using thermal analysis, electron microscopy, and elemental analysis. The dynamic mechanical properties (Young's and shear modulus) were measured using an ultrasonic pulse technique. The electron microscopy results showed a good distribution of the nanofillers in the polymer matrix. The glass transition temperature, thermal degradation temperature, and dynamic elastic moduli of the nanocomposites were shown to increase with an increase in the weight percentage of nanofibers in the composite. The resulting nanocomposites exhibited improved elastic properties and have potential application in dental composites and bone cements.


Assuntos
Cimentos Ósseos/química , Cimentos Dentários/química , Nanocompostos/química , Polimetil Metacrilato/química , Titânio/química , Cimentos Ósseos/síntese química , Cimentos Dentários/síntese química , Teste de Materiais
13.
J Phys Chem B ; 110(33): 16212-8, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913745

RESUMO

TiO(2) nanospherical and fibered structures were obtained via a one-step sol-gel method in supercritical carbon dioxide (scCO(2)) involving polycondensation of the alkoxide monomers titanium isopropoxide (TIP) and titanium butoxide (TBO) with acetic acid (HAc). The resulting materials were characterized by means of electron microscopy (SEM and TEM), X-ray diffraction (XRD), thermal analysis (TGA), and attenuated total reflection Fourier transmission infrared (ATR-FTIR) analysis. Depending on the experimental conditions, TiO(2) anatase nanospheres with a diameter of 20 nm or TiO(2) anatase/rutile nanofibers with a diameter of 10-100 nm were obtained. Fiber formation was enhanced by a higher HAc/Ti ratio and the use of the titanium isopropoxide (TIP) monomer. The mechanism of the microstructure formation was studied using in situ FTIR analysis in scCO(2). The FTIR results indicated that the formation of nanofibers was favored by a titanium hexamer that leads to one-dimensional condensation, while nanospheres were favored by a hexamer that permits three-dimensional condensation.


Assuntos
Dióxido de Carbono/química , Nanoestruturas/química , Titânio/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
14.
Langmuir ; 22(9): 4390-6, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16618192

RESUMO

The objective of the present study was to synthesize porous ZrO2 aerogels with a nanostructure via a direct sol-gel route in the green solvent supercritical carbon dioxide (scCO2). The synthesis involved the coordination and polycondensation of a zirconium alkoxide using acetic acid in CO2, followed by scCO2 drying and calcination. Either a translucent or opaque monolith was obtained, which was subsequently characterized by electron microscopy, X-ray diffraction, thermal analysis, N2 physisorption, and infrared spectroscopy analysis. The electron microscopy results showed that the translucent monolithic ZrO2 exhibited a well-defined mesoporous structure, while the opaque monolith, formed using added alcohol as a cosolvent, was composed of loosely compacted nanospherical particles with a diameter of ca. 20 nm. After calcination at 400 and 500 degrees C, X-ray diffraction results indicated that the ZrO2 exhibited tetragonal and/or monoclinic phases. In situ infrared spectroscopy results showed the formation of a Zr-acetate coordinate complex at the initial stage of the polycondensation, followed by further condensation of the complex into macromolecules.

15.
Langmuir ; 21(14): 6150-3, 2005 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15982013

RESUMO

In this letter, we present a new method to synthesize titania nanofibers with nanocrystallites via a sol-gel route in supercritical CO2. The nanofibers were formed by the esterification and condensation of titanium alkoxides using acetic acid as the polymerization agent in supercritical CO2 from 40 to 70 degrees C and 2500 to 8000 psia. The TiO2 nanofiber morphology was characterized by means of SEM and HRTEM, which indicated that the diameters ranged from 9 to 100 nm. N2 physisorption, and powder XRD showed that the nanofibers exhibited relatively high surface areas up to 400 m2/g and anatase and/or rutile nanocrystallites were formed after calcination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...