Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080556

RESUMO

This paper focused on adding a suitable lubrication effect at the interface between the rubber and mixer chamber wall on reducing the surface wear rate of the mixer chamber wall. In the research process, the contact model between the compound and internal mixer chamber wall was simplified to the pin-on-disc experimental model. The experimental results showed that the friction coefficient and the metal surface wear rate of the mixer chamber were reduced (by approximately 24%) by adding an appropriate amount of antifriction agent in the mixing process, while the comprehensive properties of the compound showed an improvement trend. By analyzing the surface elements of the rubber compound, the MoS2 with an anti-wear effect on the surface of the rubber compound can form a lubrication mechanism between the rubber, filler, and mixer chamber wall metal. Combined with the result of the comprehensive properties of rubber, which showed that although the appropriate amount of antifriction agent formed a lubrication protection mechanism between the rubber and the inner mixing chamber wall, the mechanism did not affect the friction behavior required for mixing. The study can effectively enhance the effective friction mixing and reduce the wear and power consumption of the mixing chamber caused by excess friction during the mixing process.

2.
J Med Chem ; 65(6): 4600-4615, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35293760

RESUMO

Inhibition of the S-adenosyl methionine (SAM)-producing metabolic enzyme, methionine adenosyltransferase 2A (MAT2A), has received significant interest in the field of medicinal chemistry due to its implication as a synthetic lethal target in cancers with the deletion of the methylthioadenosine phosphorylase (MTAP) gene. Here, we report the identification of novel MAT2A inhibitors with distinct in vivo properties that may enhance their utility in treating patients. Following a high-throughput screening, we successfully applied the structure-based design lessons from our first-in-class MAT2A inhibitor, AG-270, to rapidly redesign and optimize our initial hit into two new lead compounds: a brain-penetrant compound, AGI-41998, and a potent, but limited brain-penetrant compound, AGI-43192. We hope that the identification and first disclosure of brain-penetrant MAT2A inhibitors will create new opportunities to explore the potential therapeutic effects of SAM modulation in the central nervous system (CNS).


Assuntos
Metionina Adenosiltransferase , Neoplasias , Encéfalo/metabolismo , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico , S-Adenosilmetionina/metabolismo
3.
J Med Chem ; 64(8): 4430-4449, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33829783

RESUMO

The metabolic enzyme methionine adenosyltransferase 2A (MAT2A) was recently implicated as a synthetic lethal target in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene, which is adjacent to the CDKN2A tumor suppressor and codeleted with CDKN2A in approximately 15% of all cancers. Previous attempts to target MAT2A with small-molecule inhibitors identified cellular adaptations that blunted their efficacy. Here, we report the discovery of highly potent, selective, orally bioavailable MAT2A inhibitors that overcome these challenges. Fragment screening followed by iterative structure-guided design enabled >10 000-fold improvement in potency of a family of allosteric MAT2A inhibitors that are substrate noncompetitive and inhibit release of the product, S-adenosyl methionine (SAM), from the enzyme's active site. We demonstrate that potent MAT2A inhibitors substantially reduce SAM levels in cancer cells and selectively block proliferation of MTAP-null cells both in tissue culture and xenograft tumors. These data supported progressing AG-270 into current clinical studies (ClinicalTrials.gov NCT03435250).


Assuntos
Inibidores Enzimáticos/química , Metionina Adenosiltransferase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/genética , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Homozigoto , Humanos , Metionina Adenosiltransferase/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade
4.
Cancer Cell ; 39(2): 209-224.e11, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33450196

RESUMO

The methylthioadenosine phosphorylase (MTAP) gene is located adjacent to the cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor-suppressor gene and is co-deleted with CDKN2A in approximately 15% of all cancers. This co-deletion leads to aggressive tumors with poor prognosis that lack effective, molecularly targeted therapies. The metabolic enzyme methionine adenosyltransferase 2α (MAT2A) was identified as a synthetic lethal target in MTAP-deleted cancers. We report the characterization of potent MAT2A inhibitors that substantially reduce levels of S-adenosylmethionine (SAM) and demonstrate antiproliferative activity in MTAP-deleted cancer cells and tumors. Using RNA sequencing and proteomics, we demonstrate that MAT2A inhibition is mechanistically linked to reduced protein arginine methyltransferase 5 (PRMT5) activity and splicing perturbations. We further show that DNA damage and mitotic defects ensue upon MAT2A inhibition in HCT116 MTAP-/- cells, providing a rationale for combining the MAT2A clinical candidate AG-270 with antimitotic taxanes.


Assuntos
Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Metionina Adenosiltransferase/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina , Dano ao DNA/genética , Deleção de Genes , Células HCT116 , Células HEK293 , Humanos , Metionina Adenosiltransferase/genética , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Splicing de RNA/genética , S-Adenosilmetionina/metabolismo
5.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082276

RESUMO

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Hematológicas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Genômica/métodos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/patologia , Humanos , Estadiamento de Neoplasias , Proteômica/métodos
6.
ACS Med Chem Lett ; 11(2): 101-107, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32071674

RESUMO

Inhibitors of mutant isocitrate dehydrogenase (mIDH) 1 and 2 cancer-associated enzymes prevent the accumulation of the oncometabolite d-2-hydroxyglutarate (2-HG) and are under clinical investigation for the treatment of several cancers harboring an IDH mutation. Herein, we describe the discovery of vorasidenib (AG-881), a potent, oral, brain-penetrant dual inhibitor of both mIDH1 and mIDH2. X-ray cocrystal structures allowed us to characterize the compound binding site, leading to an understanding of the dual mutant inhibition. Furthermore, vorasidenib penetrates the brain of several preclinical species and inhibits 2-HG production in glioma tissue by >97% in an orthotopic glioma mouse model. Vorasidenib represents a novel dual mIDH1/2 inhibitor and is currently in clinical development for the treatment of low-grade mIDH glioma.

7.
Nat Commun ; 10(1): 97, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626872

RESUMO

Squalene epoxidase (SQLE), also known as squalene monooxygenase, catalyzes the stereospecific conversion of squalene to 2,3(S)-oxidosqualene, a key step in cholesterol biosynthesis. SQLE inhibition is targeted for the treatment of hypercholesteremia, cancer, and fungal infections. However, lack of structure-function understanding has hindered further progression of its inhibitors. We have determined the first three-dimensional high-resolution crystal structures of human SQLE catalytic domain with small molecule inhibitors (2.3 Å and 2.5 Å). Comparison with its unliganded state (3.0 Å) reveals conformational rearrangements upon inhibitor binding, thus allowing deeper interpretation of known structure-activity relationships. We use the human SQLE structure to further understand the specificity of terbinafine, an approved agent targeting fungal SQLE, and to provide the structural insights into terbinafine-resistant mutants encountered in the clinic. Collectively, these findings elucidate the structural basis for the specificity of the epoxidation reaction catalyzed by SQLE and enable further rational development of next-generation inhibitors.


Assuntos
Esqualeno Mono-Oxigenase/química , Esqualeno Mono-Oxigenase/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Insetos , Conformação Proteica , Domínios Proteicos , Esqualeno/metabolismo , Esqualeno Mono-Oxigenase/antagonistas & inibidores
8.
Bioorg Med Chem Lett ; 28(23-24): 3780-3783, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30337231

RESUMO

A novel series of pyrazolyltetrahydropyran N-type calcium channel blockers are described. Structural modifications of the series led to potent compounds in both a cell-based fluorescent calcium influx assay and a patch clamp electrophysiology assay. Representative compounds from the series were bioavailable and showed efficacy in the rat CFA and CCI models of inflammatory and neuropathic pain.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Neuralgia/tratamento farmacológico , Pirazóis/química , Pirazóis/uso terapêutico , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Descoberta de Drogas , Células HEK293 , Humanos , Masculino , Neuralgia/metabolismo , Técnicas de Patch-Clamp , Piranos/química , Piranos/farmacologia , Piranos/uso terapêutico , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley
11.
ACS Med Chem Lett ; 8(9): 947-952, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28947942

RESUMO

We have discovered a novel series of isothiazole-based phenylpropanoic acids as GPR120 agonists. Extensive structure-activity relationship studies led to the discovery of a potent GPR120 agonist 4x, which displayed good EC50 values in both calcium and ß-arrestin assays. It also presented good pharmaceutical properties and a favorable PK profile. Moreover, it demonstrated in vivo antidiabetic activity in C57BL/6 DIO mice. Studies in WT and knockout DIO mice showed that it improved glucose handling during an OGTT via GPR120. Overall, 4x possessed promising antidiabetic effect and good safety profile to be a development candidate.

12.
Bioorg Med Chem Lett ; 27(15): 3272-3278, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28642104
13.
ACS Med Chem Lett ; 8(5): 560-565, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523111

RESUMO

We have discovered a novel series of tetrahydrobenzimidazoles 3 as TGR5 agonists. Initial structure-activity relationship studies with an assay that measured cAMP levels in murine enteroendocrine cells (STC-1 cells) led to the discovery of potent agonists with submicromolar EC50 values for mTGR5. Subsequent optimization through methylation of the 7-position of the core tetrahydrobenzimidazole ring resulted in the identification of potent agonists for both mTGR5 and hTGR5 (human enteroendocrine NCI-H716 cells). While the lead compounds displayed low to moderate exposure after oral dosing, they significantly reduced blood glucose levels in C57 BL/6 mice at 30 mg/kg and induced a 13-22% reduction in the area under the blood glucose curve (AUC)0-120 min in oral glucose tolerance tests (OGTT).

15.
Bioorg Med Chem Lett ; 24(9): 2137-40, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685539

RESUMO

The discovery of a novel series of cyclopenta[b]furans as CCR2 inhibitors is discussed. This series has excellent CCR2 potency and PK characteristics, and good cardiovascular safety.


Assuntos
Furanos/química , Furanos/farmacologia , Receptores CCR2/antagonistas & inibidores , Linhagem Celular , Quimiocina CCL2/imunologia , Humanos , Receptores CCR2/imunologia
18.
Bioorg Med Chem Lett ; 24(4): 1239-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916257

RESUMO

SAR study of 5-aminooctahydrocyclopentapyrrole-3a-carboxamide scaffold led to identification of several CCR2 antagonists with potent activity in both binding and functional assays. Their cardiovascular safety and pharmacokinetic properties were also evaluated.


Assuntos
Ciclopentanos/farmacologia , Descoberta de Drogas , Pirróis/farmacologia , Receptores CCR2/antagonistas & inibidores , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 23(4): 1063-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23294701

RESUMO

The inflammatory response associated with the activation of C-C chemokine receptor CCR2 via it's interaction with the monocyte chemoattractant protein-1 (MCP-1, CCL2) has been implicated in many disease states, including rheumatoid arthritis, multiple sclerosis, atherosclerosis, asthma and neuropathic pain. Small molecule antagonists of CCR2 have been efficacious in animal models of inflammatory disease, and have been advanced into clinical development. The necessity to attenuate hERG binding appears to be a common theme for many of the CCR2 antagonist scaffolds appearing in the literature, presumably due the basic hydrophobic motif present in all of these molecules. Following the discovery of a novel cyclohexyl azetidinylamide CCR2 antagonist scaffold, replacement of the amide bond with heterocyclic rings was explored as a strategy for reducing hERG binding and improving pharmacokinetic properties.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Azetidinas/química , Azetidinas/farmacologia , Receptores CCR2/antagonistas & inibidores , Animais , Humanos , Camundongos
20.
J Steroid Biochem Mol Biol ; 134: 51-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23098693

RESUMO

Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders.


Assuntos
Androgênios/química , Androgênios/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/química , Antagonistas de Androgênios/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Feminino , Hormônios/sangue , Masculino , Camundongos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Orquiectomia , Ovariectomia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Ratos , Ratos Long-Evans , Comportamento Sexual Animal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...