Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8247-8254, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405492

RESUMO

Carbon nanofibers (CNFs) are a fascinating electrode material for energy storage devices due to their one-dimensionality, interconnected networks, and chemical stability. However, a relatively low specific surface area of CNFs hinders their use as supercapacitor electrodes. Here, nitrogen-doped hollow CNFs with hierarchical pore structures are prepared via electrospinning of core-shell polymer nanofibers and subsequent carbonization and activation under an ammonia atmosphere. Hierarchical pore structures with micro-, meso-, and macropores are controlled by an ammonia etching effect during the carbonization of polymer nanofibers. In addition, a hollow structure in CNFs is obtained by thermal decomposition of the core polymer during the carbonization/activation. The nitrogen-doped activated hollow CNFs (ahCNFs) exhibited an exceptionally high specific surface area of 3618 m2/g with increased mesopores. Thus, a symmetric supercapacitor using ahCNFs electrodes with a 6 M KOH aqueous electrolyte provides a high specific capacitance of 208 F/g at a current density of 1 A/g, a high energy density of 7.22 W h/kg at a power density of 502 W/kg, a good rate capability, and cyclic stability. Moreover, the freestanding ahCNFs are used for flexible supercapacitor electrodes without any binder. This work demonstrates the great potential of highly porous ahCNFs for high-performance energy storage devices.

2.
ACS Appl Mater Interfaces ; 15(5): 7627-7634, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700883

RESUMO

Free-standing graphene-based paper-like materials have garnered significant interest for various applications because of their tunable physical and chemical properties, along with unique multilayered structures. Because of the layered configuration of graphene paper, characterization of the interactions between graphene sheets is critical for understanding its fundamental properties and applications. We investigate the interlayer cohesion energies in graphene papers using the mode I fracture concept with double cantilever beam specimens. Mechanical separation along the middle of the graphene paper thickness enables the evaluation of interlayer bonding strength in the paper. Starting from graphene oxide paper, the chemical reduction using hydroiodic acid tunes the interlayer cohesion energy from 11.30 ± 0.25 to 4.78 ± 0.18 J/m2 as the reduction time increases. The interlayer cohesion energy is correlated with the oxygen content, interlayer spacing, and electrical conductivity of graphene papers. This work provides a fundamental characterization of the interlayer cohesion energy of graphene paper and establishes the potential for tunability of the interlayer interactions in graphene paper.

3.
Soft Robot ; 10(1): 17-29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35255238

RESUMO

Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages. In this study, a bionic arm driven by TCAs was developed for light and flexible operation. The aim of this study was to gain a foothold in the future of robot development using TCA, which is considered as the appropriate artificial muscle. The main developments were with regard to the design (from actuator design to system design), system configuration for control, and control method. First, a process technology for repeatedly manufacturing TCA, which can be used practically and delivers sufficient performance, was developed. Based on the developed actuator, a joint was designed to move the elbow and hand. The final bionic arm was developed by integrating the TCA, pulley joint, and control system. It moved the elbow up to 100° and allowed the hand to move in three degrees of freedom. Using the control method for each joint, we were able to show the movement by using the hand and elbow.


Assuntos
Braço , Robótica , Biônica , Robótica/métodos , Músculos , Movimento/fisiologia
4.
ACS Appl Bio Mater ; 5(6): 2795-2811, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35621372

RESUMO

Currently, water pollution is a significant health problem for both humans and animals due to large amounts of dye-containing wastewater. Thus, polymer composite membranes (PCMs) are considered as efficient adsorption/filtration membranes that can be utilized for removing organic dyes from contaminated water/wastewater. In this study, the goal is to explore the modification of the interfacial dialysis cellulose (DC) surface through molecular interactions of an active graphene oxide-chitosan (GO-CTS) composite hydrogel (GCCH) network without the use of an external cross-linker toward an effective dye removal ability using a simple casting process and a low-cost adsorption technique, resulting in the formation of a PCM, i.e., GO/CTS/DC membrane (GCD-mems). Concomitantly, the incorporation of the GCCH network (as an active hybrid network) and DC (as a supporting material) is considered as a promising approach toward a dye-removing PCM. As a result, the GCD-mems showed that cellulose robustly interacted via the chemical bonds of the GCCH network by maintaining the three-dimensional (3D) porous layer structures, and the functional surface of the membrane was enhanced toward specific groups for an effective dye removal approach. In addition, there is a significant improvement in dye removal performance after modification of the interfacial DC surface through molecular interactions of GCCH, i.e., high adsorption capacities of cationic and anionic dye molecules on the GCD-mems, compared to the relevant GO-based adsorbents. Also, the dye flux and rejection of the GCD-mems can simultaneously remove both methylene blue and Congo red. In the adsorption, it is appropriate with the pseudo-second-order and Langmuir models corresponding to chemical adsorption and monolayer approaches, as well as physical sieving through the 3D layers of porous channels of GCD-mems during the filtration process. Moreover, the structural stability and sustainability of the PCMs are enhanced during the recycling process, and the use of ethanol in the recycling process further simplifies the process and reduces the cost of the PCMs. Thus, the GCD-mems are encouraged as potential candidates that can be applied directly in the removal of dyes from the wastewater of textile industries or selective dialysis applications.


Assuntos
Quitosana , Poluentes Químicos da Água , Celulose/química , Quitosana/química , Corantes/química , Grafite , Polímeros , Diálise Renal , Águas Residuárias , Poluentes Químicos da Água/química
5.
Nat Commun ; 13(1): 104, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256609

RESUMO

Recent advances in metal additive manufacturing (AM) have provided new opportunities for prompt designs of prototypes and facile personalization of products befitting the fourth industrial revolution. In this regard, its feasibility of becoming a green technology, which is not an inherent aspect of AM, is gaining more interests. A particular interest in adapting and understanding of eco-friendly ingredients can set its important groundworks. Here, we demonstrate a water-based solid-phase binding agent suitable for binder jetting 3D printing of metals. Sodium salts of common fruit acid chelators form stable metal-chelate bridges between metal particles, enabling elaborate 3D printing of metals with improved strengths. Even further reductions in the porosity between the metal particles are possible through post-treatments. A compatibility of this chelation chemistry with variety of metals is also demonstrated. The proposed mechanism for metal 3D printing can open up new avenues for consumer-level personalized 3D printing of metals.


Assuntos
Frutas , Impressão Tridimensional , Quelantes , Metais , Porosidade
6.
Nanomaterials (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685022

RESUMO

The intrinsic electrical conductivity of graphene is one of the key factors affecting the electrical conductance of its assemblies, such as papers, films, powders, and composites. Here, the local electrical conductivity of the individual graphene flakes was investigated using conductive atomic force microscopy (C-AFM). An isolated graphene flake connected to a pre-fabricated electrode was scanned using an electrically biased tip, which generated a current map over the flake area. The current change as a function of the distance between the tip and the electrode was analyzed analytically to estimate the contact resistance as well as the local conductivity of the flake. This method was applied to characterize graphene materials obtained using two representative large-scale synthesis methods. Monolayer graphene flakes synthesized by chemical vapor deposition on copper exhibited an electrical conductivity of 1.46 ± 0.82 × 106 S/m. Reduced graphene oxide (rGO) flakes obtained by thermal annealing of graphene oxide at 300 and 600 °C exhibited electrical conductivities of 2.3 ± 1.0 and 14.6 ± 5.5 S/m, respectively, showing the effect of thermal reduction on the electrical conductivity of rGO flakes. This study demonstrates an alternative method to characterizing the intrinsic electrical conductivity of graphene-based materials, which affords a clear understanding of the local properties of individual graphene flakes.

7.
Nanomaterials (Basel) ; 11(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805258

RESUMO

The emergence of graphene paper comprising well-stacked graphene flakes has promoted the application of graphene-based materials in diverse fields such as energy storage devices, membrane desalination, and actuators. The fundamental properties of graphene paper such as mechanical, electrical, and thermal properties are critical to the design and fabrication of paper-based devices. In this study, the interlayer interactions in graphene paper were investigated by double cantilever beam (DCB) fracture tests. Graphene papers fabricated by flow-directed stacking of electrochemically exfoliated few-layer graphene flakes were mechanically separated into two parts, which generated force-displacement responses of the DCB sample. The analysis based on fracture mechanics revealed that the interlayer separation energy of the graphene paper was 9.83 ± 0.06 J/m2. The results provided a fundamental understanding of the interfacial properties of graphene papers, which will be useful for developing paper-based devices with mechanical integrity.

8.
Nanomaterials (Basel) ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807356

RESUMO

A porous Cu (P-Cu) mesh was used as a current collector and its morphological effect on the supercapacitor performance was investigated. A porous surface was obtained by thermally annealing the Cu mesh using ammonia gas. Hierarchically porous activated graphene (AG) with a high specific surface area (SSA) was deposited on the P-Cu mesh using electrophoretic deposition, aided by graphene oxide (GO). GO was thermally converted to electrically conductive reduced graphene oxide (rGO). The AG/rGO that was deposited on the P-Cu mesh achieved a high specific capacitance of up to 140.0 F/g and a high energy density of up to 3.11 Wh/kg at a current density of 2 A/g in 6 m KOH aqueous electrolyte. The high SSA of AG and the porous surface morphology of the Cu mesh allowed efficient electric double-layer formation and charge transport. This work offers an alternative to improve supercapacitors by combining a porous metallic current collector with porous AG.

9.
ACS Nano ; 15(1): 707-718, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33411506

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention owing to their synergetic effects with other 2D materials, such as graphene and hexagonal boron nitride, in TMD-based heterostructures. Therefore, it is important to understand the physical properties of TMD-TMD vertical heterostructures for their applications in next-generation electronic devices. However, the conventional synthesis process of TMD-TMD heterostructures has some critical limitations, such as nonreproducibility and low yield. In this paper, we synthesize wafer-scale MoS2-WS2 vertical heterostructures (MWVHs) using plasma-enhanced chemical vapor deposition (PE-CVD) via penetrative single-step sulfurization discovered by time-dependent analysis. This method is available for fabricating uniform large-area vertical heterostructures (4 in.) at a low temperature (300 °C). MWVHs were characterized using various spectroscopic and microscopic techniques, which revealed their uniform nanoscale polycrystallinity and the presence of vertical layers of MoS2 and WS2. In addition, wafer-scale MWVHs diodes were fabricated and demonstrated uniform performance by current mapping. Furthermore, mode I fracture tests were performed using large double cantilever beam specimens to confirm the separation of the MWVHs from the SiO2/Si substrate. Therefore, this study proposes a synthesis mechanism for TMD-TMD heterostructures and provides a fundamental understanding of the interfacial properties of TMD-TMD vertical heterostructures.

10.
Nano Lett ; 21(2): 1161-1168, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33411539

RESUMO

Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.

11.
Sci Rep ; 10(1): 17553, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067504

RESUMO

Twisted and coiled actuators (TCAs), fabricated by twisting cheap nylon sewing threads, have attracted a great deal of attention for their use as artificial muscles or soft actuators. Since the dynamic behavior of a thermally-operated TCA is governed by its thermal properties, graphene and silver nanoflowers (AgNFs) were spray-coated onto the surface of an actuator to achieve enhanced heat transfer. Addition of AgNFs improves interfacial thermal contacts between graphene flakes, while pristine graphene flakes have extremely high in-plane thermal conductivity. Thus, the synergistic effect of graphene and AgNFs reduced the total cycle time of the TCA by up to 38%. Furthermore, when a pulsed current with a 40% duty cycle was applied to the TCA, the graphene/AgNF-coated TCA exhibited a threefold larger peak-to-peak amplitude of the displacement oscillation of the actuator, as compared to that of the non-coated TCA, which demonstrates that the combination of graphene and AgNFs effectively reduced a cooling time of the TCA. This work shows great potential for a simple coating of graphene and AgNFs to produce high-performance thermally-operated soft actuators.

12.
Nanomaterials (Basel) ; 10(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086564

RESUMO

Embedding conductive nanomaterials into elastomeric polymer matrices is one of the most promising approaches for fabricating stretchable strain sensors capable of monitoring large mechanical movements or deformation through the detection of resistance changes. Here, hybrid fillers comprising graphene and silver nanowires (AgNWs) are incorporated into extremely stretchable spandex to fabricate strain sensors. Composites containing only graphene and those containing the graphene/AgNW hybrid fillers are systematically investigated by evaluating their electrical and mechanical properties. The synergistic effect between graphene and AgNWs enable the strain sensors based on the composites to experience a large strain range of up to 120%, and low hysteresis with a high gauge factor of 150.3 at a strain of 120%. These reliable strain sensors are utilized for monitoring human motions such as heartbeats and body movements. The findings of this study indicate the significant applicability of graphene/AgNW/spandex composites in future applications that demand high-performance stretchable strain sensors.

13.
Nano Converg ; 7(1): 4, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037481

RESUMO

Water is one of the most important resources for human survival and development. Efficient wastewater treatment techniques such as coagulation, filtration, ozonation, and reverse osmosis have been studied to remove toxic materials from water. Implementation of adsorption columns has been proven to be an efficient wastewater treatment method, particularly for the removal of organic contaminants. In this study, we present the preparation of an eco-friendly graphene oxide-chitosan (GC) composite hydrogel column (GCCHC) and its application as a broad-spectrum adsorbent for wastewater treatment. The GCCHC shows a high removal capacity towards different contaminants including both cationic dyes [methylene blue (MB) and rhodamine B (RhB)] and anionic dyes [methylene orange (MO) and congo red (CR)]. Moreover, the samples can be regenerated and recycled without loss of contaminant removal capacity over successive adsorption and washing cycles.

14.
Nanomaterials (Basel) ; 9(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569757

RESUMO

Graphene powders obtained via the reduction of graphene oxide flakes have been widely used in various applications as they can be synthesized in large quantities with outstanding properties. The electrical conductivity of graphene powders is critical for their uses in fabricating high-performance devices or materials. Here, we investigated the bulk electrical conductivity of reduced graphene oxide (rGO) powders depending on the applied pressure and additional thermal annealing. The electrical conductivity of the rGO powders was correlated with the change in the carbon-to-oxygen ratio via additional thermal reduction. Furthermore, the effect of the morphology of the rGO powders was studied through electromechanical measurements. This study provides a reliable method for the electromechanical characterization of rGO powders and a better understanding of the electrical conductivity of graphene-based materials.

15.
Nanomaterials (Basel) ; 9(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151231

RESUMO

Graphene papers have great potential for various applications, such as electrodes in energy storage devices, protective coating, and desalination, because of their free-standing structure, flexibility, and chemical tunability. The inner structures of the graphene papers can affect their physical properties and device performance. Here, we investigated a way to fabricate graphene papers from crumpled reduced graphene oxide (rGO) spheres. We found that ultrasonication was useful for tailoring the morphology of the crumpled graphene spheres, resulting in a successful fabrication of graphene papers with tunable inner pore structures. The fabricated graphene papers showed changes in mechanical and electrical properties depending on their pore structures. In addition, the tailored pore structures had an influence on the electrochemical performance of supercapacitors with the fabricated graphene papers as electrode materials. This work demonstrates a facile method to fabricate graphene papers from crumpled rGO powders, as well as a fundamental understanding of the effect of the inner pore structures in mechanical, electrical, and electrochemical characteristics of graphene papers.

16.
Nanomaterials (Basel) ; 8(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071684

RESUMO

The production of a large amount of high-quality transition metal dichalcogenides is critical for their use in industrial applications. Here, we demonstrate the scalable exfoliation of bulk molybdenum disulfide (MoS2) powders into single- or few-layer nanosheets using the Taylor-Couette flow. The toroidal Taylor vortices generated in the Taylor-Couette flow provide efficient mixing and high shear stresses on the surfaces of materials, resulting in a more efficient exfoliation of the layered materials. The bulk MoS2 powders dispersed in N-methyl-2-pyrrolidone (NMP) were exfoliated with the Taylor-Couette flow by varying the process parameters, including the initial concentration of MoS2 in the NMP, rotation speed of the reactor, reaction time, and temperature. With a batch process at an optimal condition, half of the exfoliated MoS2 nanosheets were thinner than ~3 nm, corresponding to single to ~4 layers. The spectroscopic and microscopic analysis revealed that the exfoliated MoS2 nanosheets contained the same quality as the bulk powders without any contamination or modification. Furthermore, the continuous exfoliation of MoS2 was demonstrated by the Taylor-Couette flow reactor, which produced an exfoliated MoS2 solution with a concentration of ~0.102 mg/mL. This technique is a promising way for the scalable production of single- or few-layer MoS2 nanosheets without using hazardous intercalation materials.

17.
Sci Rep ; 7(1): 14740, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116198

RESUMO

The adhesion interactions of two-dimensional (2D) materials are of importance in developing flexible electronic devices due to relatively large surface forces. Here, we investigated the adhesion properties of large-area monolayer MoS2 grown on silicon oxide by using chemical vapor deposition. Fracture mechanics concepts using double cantilever beam configuration were used to characterize the adhesion interaction between MoS2 and silicon oxide. While the interface between MoS2 and silicon oxide was fractured under displacement control, force-displacement response was recorded. The separation energy, adhesion strength and range of the interactions between MoS2 and silicon oxide were characterized by analytical and numerical analyses. In addition to the fundamental adhesion properties of MoS2, we found that MoS2 monolayers on silicon oxide had self-healing properties, meaning that when the separated MoS2 and silicon oxide were brought into contact, the interface healed. The self-healing property of MoS2 is potentially applicable to the development of new composites or devices using 2D materials.

18.
Nat Nanotechnol ; 11(5): 426-31, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26828845

RESUMO

Bernal (AB)-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices. A scalable approach to synthesize high-quality BLG is therefore critical, which requires minimal crystalline defects in both graphene layers and maximal area of Bernal stacking, which is necessary for bandgap tunability. Here we demonstrate that in an oxygen-activated chemical vapour deposition (CVD) process, half-millimetre size, Bernal-stacked BLG single crystals can be synthesized on Cu. Besides the traditional 'surface-limited' growth mechanism for SLG (1st layer), we discovered new microscopic steps governing the growth of the 2nd graphene layer below the 1st layer as the diffusion of carbon atoms through the Cu bulk after complete dehydrogenation of hydrocarbon molecules on the Cu surface, which does not occur in the absence of oxygen. Moreover, we found that the efficient diffusion of the carbon atoms present at the interface between Cu and the 1st graphene layer further facilitates growth of large domains of the 2nd layer. The CVD BLG has superior electrical quality, with a device on/off ratio greater than 10(4), and a tunable bandgap up to ∼100 meV at a displacement field of 0.9 V nm(-1).

19.
ACS Nano ; 9(5): 4726-33, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25809112

RESUMO

Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.

20.
ACS Nano ; 9(2): 1325-35, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25646863

RESUMO

A very fast, dry transfer process based on mechanical delamination successfully effected the transfer of large-area, CVD grown graphene on copper foil to silicon. This has been achieved by bonding silicon backing layers to both sides of the graphene-coated copper foil with epoxy and applying a suitably high separation rate to the backing layers. At the highest separation rate considered (254.0 µm/s), monolayer graphene was completely transferred from the copper foil to the target silicon substrate. On the other hand, the lowest rate (25.4 µm/s) caused the epoxy to be completely separated from the graphene. Fracture mechanics analyses were used to determine the adhesion energy between graphene and its seed copper foil (6.0 J/m(2)) and between graphene and the epoxy (3.4 J/m(2)) at the respective loading rates. Control experiments for the epoxy/silicon interface established a rate dependent adhesion, which supports the hypothesis that the adhesion of the graphene/epoxy interface was higher than that of the graphene/copper interface at the higher separation rate, thereby providing a controllable mechanism for selective transfer of graphene in future nanofabrication systems such as roll-to-roll transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...