Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 20(11): 1531-1552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946533

RESUMO

INTRODUCTION: Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED: This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION: We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.


Assuntos
Ácidos Nucleicos , Humanos , Terapia Genética , Pulmão , Sistemas de Liberação de Medicamentos
2.
Cell Physiol Biochem ; 57(5): 331-344, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724045

RESUMO

BACKGROUND/AIMS: Recombinant adeno-associated viruses (rAAV) are an important tool for lung targeted gene therapy. Substitution of tyrosine with phenylalanine residues (Y-F) in the capsid have been shown to protect the AAV vector from ubiquitin/proteasome degradation, increasing transduction efficiency. We tested the mutant Y733F-AAV8 vector for mucus diffusion, as well as the safety and efficacy of pigment epithelium-derived factor (PEDF) gene transfer to the lung. METHODS: For this purpose, Y733F-AAV8-PEDF (1010 viral genome) was administered intratracheally to C57BL/6 mice. Lung mechanics, morphometry, and inflammation were evaluated 7, 14, 21, and 28 days after injection. RESULTS: The tyrosine-mutant AAV8 vector was efficient at penetrating mucus in ex vivo assays and at transferring the gene to lung cells after in vivo instillation. Increased levels of transgene mRNA were observed 28 days after vector administration. Overexpression of PEDF did not affect in vivo lung parameters. CONCLUSION: These findings provide a basis for further development of Y733F-AAV8-based gene therapies for safe and effective delivery of PEDF, which has anti-angiogenic, anti-inflammatory and anti-fibrotic activities and might be a promising therapy for lung inflammatory disorders.


Assuntos
Proteínas do Olho , Técnicas de Transferência de Genes , Serpinas , Animais , Camundongos , Proteínas do Olho/genética , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , Serpinas/genética
3.
Adv Drug Deliv Rev ; 199: 114993, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414361

RESUMO

Messenger RNA (mRNA) is now in the limelight as a powerful tool for treating various human diseases, especially malignant tumors, thanks to the remarkable clinical outcomes of mRNA vaccines using lipid nanoparticle technology during the COVID-19 pandemic. Recent promising preclinical and clinical results that epitomize the advancement in mRNA and nanoformulation-based delivery technologies have highlighted the tremendous potential of mRNA in cancer immunotherapy. mRNAs can be harnessed for cancer immunotherapy in forms of various therapeutic modalities, including cancer vaccines, adoptive T-cell therapies, therapeutic antibodies, and immunomodulatory proteins. This review provides a comprehensive overview of the current state and prospects of mRNA-based therapeutics, including numerous delivery and therapeutic strategies.


Assuntos
COVID-19 , Neoplasias , Humanos , RNA Mensageiro , Pandemias , COVID-19/terapia , Imunoterapia/métodos
4.
ACS Biomater Sci Eng ; 9(8): 4567-4572, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37523785

RESUMO

We here introduce a novel bioreducible polymer-based gene delivery platform enabling widespread transgene expression in multiple brain regions with therapeutic relevance following intracranial convection-enhanced delivery. Our bioreducible nanoparticles provide markedly enhanced gene delivery efficacy in vitro and in vivo compared to nonbiodegradable nanoparticles primarily due to the ability to release gene payloads preferentially inside cells. Remarkably, our platform exhibits competitive gene delivery efficacy in a neuron-rich brain region compared to a viral vector under previous and current clinical investigations with demonstrated positive outcomes. Thus, our platform may serve as an attractive alternative for the intracranial gene therapy of neurological disorders.


Assuntos
Técnicas de Transferência de Genes , Polímeros , Polímeros/metabolismo , Terapia Genética , Encéfalo/metabolismo
5.
J Extracell Vesicles ; 12(6): e12324, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272896

RESUMO

Adeno-associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector-producing HEK-293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus-covered air-liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non-lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV-AAV6 interactions or to enhance gene transfer efficacy.


Assuntos
Vesículas Extracelulares , Vírus Satélites , Camundongos , Animais , Humanos , Vírus Satélites/genética , Transdução Genética , Dependovirus/genética , Células HEK293
6.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098055

RESUMO

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
7.
Bioeng Transl Med ; 8(2): e10401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925690

RESUMO

Silicosis is an irreversible and progressive fibrotic lung disease caused by massive inhalation of crystalline silica dust at workplaces, affecting millions of industrial workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a potential silicosis treatment due to its inhibitory effects on key signaling pathways that promote silica-induced pulmonary fibrosis. However, chronic and frequent use of the oral NTB formulation clinically approved for treating other fibrotic lung diseases often results in significant side effects. To this end, we engineered a nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific physicochemical properties to enhance drug retention in the lung for localized treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a wet-milling procedure in presence of Pluronic F127 to endow the formulation with nonadhesive surface coatings to minimize interactions with therapy-inactivating delivery barriers in the lung. We found that NTB-NS, following intratracheal administration, provided robust anti-fibrotic effects and mechanical lung function recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB dose given with a triple dosing frequency failed to do so. Importantly, several key pathological phenotypes were fully normalized by NTB-NS without displaying notable local or systemic adverse effects. Overall, NTB-NS may open a new avenue for localized treatment of silicosis and potentially other fibrotic lung diseases.

8.
Small ; 19(11): e2207278, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651002

RESUMO

Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.


Assuntos
Nanopartículas , Neoplasias , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Portadores de Fármacos , Encéfalo , Tamanho da Partícula
9.
Mol Pharm ; 20(1): 750-757, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448927

RESUMO

Vaccine hesitancy and the occurrence of elusive variants necessitate further treatment options for coronavirus disease 2019 (COVID-19). Accumulated evidence indicates that clinically used hypertensive drugs, angiotensin receptor blockers (ARBs), may benefit patients by mitigating disease severity and/or viral propagation. However, current clinical formulations administered orally pose systemic safety concerns and likely require a very high dose to achieve the desired therapeutic window in the lung. To address these limitations, we have developed a nanosuspension formulation of an ARB, entirely based on clinically approved materials, for inhaled treatment of COVID-19. We confirmed in vitro that our formulation exhibits physiological stability, inherent drug activity, and inhibitory effect against SARV-CoV-2 replication. Our formulation also demonstrates excellent lung pharmacokinetics and acceptable tolerability in rodents and/or nonhuman primates following direct administration into the lung. Thus, we are currently pursuing clinical development of our formulation for its uses in patients with COVID-19 or other respiratory infections.


Assuntos
COVID-19 , Infecções Respiratórias , Animais , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Telmisartan , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Infecções Respiratórias/tratamento farmacológico
10.
Curr Protoc ; 2(12): e607, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36469609

RESUMO

The advent of the first-ever retinal gene therapy product, involving subretinal administration of a virus-based gene delivery platform, has garnered hope that this state-of-the-art therapeutic modality may benefit a broad spectrum of patients with diverse retinal disorders. On the other hand, clinical studies have revealed limitations of the applied delivery strategy that may restrict its universal use. To this end, intravitreal administration of synthetic gene-delivery platforms, such as polymer-based nanoparticles (PNPs), has emerged as an attractive alternative to the current mainstay. To achieve success, however, it is imperative that synthetic platforms overcome key biological barriers in human eyes encountered following intravitreal administration, including the vitreous gel and inner limiting membrane (ILM). Here, we introduce a series of experiments, from the fabrication of PNPs to a comprehensive evaluation in relevant experimental models, to determine whether PNPs overcome these barriers and efficiently deliver therapeutic gene payloads to retinal cells. We conclude the article by discussing a few important considerations for successful implementation of the strategy. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation and characterization of PNPs Basic Protocol 2: Evaluation of in vitro transfection efficacy Basic Protocol 3: Evaluation of PNP diffusion in vitreous gel Basic Protocol 4: Ex vivo assessment of PNP penetration within vitreoretinal explant culture Basic Protocol 5: Assessment of in vivo transgene expression mediated by intravitreally administered PNPs.


Assuntos
Nanopartículas , Polímeros , Humanos , Polímeros/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Retina/metabolismo
11.
Thorax ; 77(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697091

RESUMO

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Assuntos
Pneumopatias Obstrutivas , Nanopartículas , Animais , DNA , Terapia Genética , Humanos , Pulmão/metabolismo , Pneumopatias Obstrutivas/terapia , Camundongos , Muco/metabolismo
12.
Drug Deliv Transl Res ; 11(6): 2430-2447, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34351575

RESUMO

Immunotherapy has emerged as an unprecedented hope for the treatment of notoriously refractory cancers. Numerous investigational drugs and immunotherapy-including combination regimens are under preclinical and clinical investigation. However, only a small patient subpopulation across different types of cancer responds to the therapy due to the presence of several mechanisms of resistance. There have been extensive efforts to overcome this limitation and to expand the patient population that could be benefited by this state-of-the-art therapeutic modality. Among various causes of the resistance, we here focus on physical stromal barriers that impede the access of immunotherapeutic drug molecules and/or native and engineered immune cells to cancer tissues and cells. Two primary stromal barriers that contribute to the resistance include aberrant tumor vasculatures and excessive extracellular matrix build-ups that restrict extravasation and infiltration, respectively, of molecular and cellular immunotherapeutic agents into tumor tissues. Here, we review the features of these barriers that limit the efficacy of immunotherapy and discuss recent advances that could potentially help immunotherapy overcome the barriers and improve therapeutic outcomes.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
13.
Mol Biol Cell ; 32(21): ar21, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406791

RESUMO

Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3ß and prevents GSK3ß-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3ß to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3ß Ser9, prevent nuclear accumulation of GSK3ß, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3ß and K19-GSK3ß interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19-GSK3ß-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3ß-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.


Assuntos
Ciclina D3/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Queratina-19/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina D3/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Fase G1 , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Queratina-19/fisiologia , Células MCF-7 , Fosforilação , Proteínas Serina-Treonina Quinases
14.
Angew Chem Int Ed Engl ; 60(28): 15225-15229, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33855792

RESUMO

Inhaled gene therapy poses a unique potential of curing chronic lung diseases, which are currently managed primarily by symptomatic treatments. However, it has been challenging to achieve therapeutically relevant gene transfer efficacy in the lung due to the presence of numerous biological delivery barriers. Here, we introduce a simple approach that overcomes both extracellular and cellular barriers to enhance gene transfer efficacy in the lung in vivo. We endowed tetra(piperazino)fullerene epoxide (TPFE)-based nanoparticles with non-adhesive surface polyethylene glycol (PEG) coatings, thereby enabling the nanoparticles to cross the airway mucus gel layer and avoid phagocytic uptake by alveolar macrophages. In parallel, we utilized a hypotonic vehicle to facilitate endocytic uptake of the PEGylated nanoparticles by lung parenchymal cells via the osmotically driven regulatory volume decrease (RVD) mechanism. We demonstrate that this two-pronged delivery strategy provides safe, wide-spread and high-level transgene expression in the lungs of both healthy mice and mice with chronic lung diseases characterized by reinforced delivery barriers.


Assuntos
Compostos de Epóxi/química , Fulerenos/química , Técnicas de Transferência de Genes , Pneumopatias/terapia , Nanopartículas/química , Doença Crônica , Humanos , Pneumopatias/metabolismo
15.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33709020

RESUMO

We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.

16.
Nat Commun ; 12(1): 249, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431872

RESUMO

Airway mucus is essential for lung defense, but excessive mucus in asthma obstructs airflow, leading to severe and potentially fatal outcomes. Current asthma treatments have minimal effects on mucus, and the lack of therapeutic options stems from a poor understanding of mucus function and dysfunction at a molecular level and in vivo. Biophysical properties of mucus are controlled by mucin glycoproteins that polymerize covalently via disulfide bonds. Once secreted, mucin glycopolymers can aggregate, form plugs, and block airflow. Here we show that reducing mucin disulfide bonds disrupts mucus in human asthmatics and reverses pathological effects of mucus hypersecretion in a mouse allergic asthma model. In mice, inhaled mucolytic treatment loosens mucus mesh, enhances mucociliary clearance, and abolishes airway hyperreactivity (AHR) to the bronchoprovocative agent methacholine. AHR reversal is directly related to reduced mucus plugging. These findings establish grounds for developing treatments to inhibit effects of mucus hypersecretion in asthma.


Assuntos
Dissulfetos/metabolismo , Hipersensibilidade/fisiopatologia , Pulmão/fisiopatologia , Muco/metabolismo , Adolescente , Adulto , Animais , Asma/metabolismo , Asma/fisiopatologia , Modelos Animais de Doenças , Expectorantes/farmacologia , Feminino , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
17.
Expert Opin Drug Deliv ; 18(5): 595-606, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33218265

RESUMO

Introduction: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..Areas covered: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.Expert opinion: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Pulmão , Muco
18.
Sci Adv ; 6(24): eaay7973, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32577505

RESUMO

Despite long-standing efforts to enhance care for chronic asthma, symptomatic treatments remain the only option to manage this highly prevalent and debilitating disease. We demonstrate that key pathology of allergic asthma can be almost completely resolved in a therapeutic manner by inhaled gene therapy. After the disease was fully and stably established, we treated mice intratracheally with a single dose of thymulin-expressing plasmids delivered via nanoparticles engineered to have a unique ability to penetrate the airway mucus barrier. Twenty days after the treatment, we found that all key pathologic features found in the asthmatic lung, including chronic inflammation, pulmonary fibrosis, and mechanical dysregulation, were normalized. We conducted tissue- and cell-based analyses to confirm that the therapeutic intervention was mediated comprehensively by anti-inflammatory and antifibrotic effects of the therapy. We believe that our findings open a new avenue for clinical development of therapeutically effective gene therapy for chronic asthma.


Assuntos
Asma , Nanopartículas , Animais , Asma/genética , Asma/terapia , Modelos Animais de Doenças , Terapia Genética , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Fator Tímico Circulante/genética , Fator Tímico Circulante/farmacologia , Fator Tímico Circulante/uso terapêutico
19.
Sci Adv ; 6(18): eaay1344, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494662

RESUMO

The delivery of systemically administered gene therapies to brain tumors is exceptionally difficult because of the blood-brain barrier (BBB) and blood-tumor barrier (BTB). In addition, the adhesive and nanoporous tumor extracellular matrix hinders therapeutic dispersion. We first developed the use of magnetic resonance image (MRI)-guided focused ultrasound (FUS) and microbubbles as a platform approach for transfecting brain tumors by targeting the delivery of systemically administered "brain-penetrating" nanoparticle (BPN) gene vectors across the BTB/BBB. Next, using an MRI-based transport analysis, we determined that after FUS-mediated BTB/BBB opening, mean interstitial flow velocity magnitude doubled, with "per voxel" flow directions changing by an average of ~70° to 80°. Last, we observed that FUS-mediated BTB/BBB opening increased the dispersion of directly injected BPNs through tumor tissue by >100%. We conclude that FUS-mediated BTB/BBB opening yields markedly augmented interstitial tumor flow that, in turn, plays a critical role in enhancing BPN transport through tumor tissue.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Barreira Hematoencefálica , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Microbolhas , Transfecção
20.
Drug Deliv Transl Res ; 10(3): 572-581, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323162

RESUMO

Several generations of poly(ß-amino ester) (PBAE) polymers have been developed for efficient cellular transfection. However, PBAE-based gene vectors, similar to other cationic materials, cannot readily provide widespread gene transfer in the brain due to adhesive interactions with the extracellular matrix (ECM). We thus engineered eight vector candidates using previously identified lead PBAE polymer variants but endowed them with non-adhesive surface coatings to facilitate their spread through brain ECM. Specifically, we screened for the ability to provide widespread gene transfer in tumor spheroids and healthy mouse brains. We then confirmed that a lead formulation provided widespread transgene expression in orthotopically established brain tumor models with an excellent in vivo safety profile. Lastly, we developed a method to store it long-term while fully retaining its brain-penetrating property. This new platform provides a broad utility in evaluating novel genetic targets for gene therapy of brain tumors and neurological disorders in preclinical and clinical settings. Graphical abstract We engineered biodegradable DNA-loaded brain-penetrating nanoparticles (DNA-BPN) possessing small particle diameters (< 70 nm) and non-adhesive surface coatings to facilitate their spread through brain tumor extracellular matrix (ECM). These DNA-BPN provide widespread gene transfer in models recapitulating the ECM barrier, including three-dimensional multicellular tumor spheroids and mice with orthotopically established brain tumor.


Assuntos
Neoplasias Encefálicas/genética , DNA/administração & dosagem , Terapia Genética/métodos , Polímeros/química , Animais , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/administração & dosagem , Materiais Revestidos Biocompatíveis/química , DNA/química , Matriz Extracelular/química , Feminino , Expressão Gênica , Humanos , Camundongos , Nanopartículas , Tamanho da Partícula , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...