Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 198: 114257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479564

RESUMO

The use of plants such as giant hogweed as raw materials for the manufacture of dosage forms has been little explored. In this study, we utilized furanocoumarins from the Heracleum sosnowskyi plant to create an experimental emulsion dosage form (EmFHS). The EmFHS was finely dispersed (481.8 nm ± 71.1 nm), shelf-stable, and contained predominantly 8-methoxypsoralen at a concentration of 1 mg/ml. Phototoxicity analysis of EmFHS for THP-1 cells under UV (365 nm) irradiation showed an IC50 of 19.1 µg/ml (24 h) and 6.3 µg/ml (48 h). In relation to spheroids (L929), EmFHS exhibited a phototoxic effect in the concentration range of 31.25-125 µg/ml8-MOP. A full phototoxic effect was observed 48 h after UV irradiation. The phototoxic effect of EmFHS in vitro was dose-dependent and comparable to the effect of emulsion synthetic 8-methoxypsoralen and chlorin e6 solution. EmFHS cytotoxicity was caused solely by UV radiation, and toxicity in the dark was minimal. EmFHS, administered at a dose of 3 mg/kg8-MOP, was found to be safe after a single intravenous administration to rats. It had a photosensitizing effect in the form of local photodermatitis when exposed to UV irradiation at a dose of 44 J/cm2. The biokinetics of emulsion furanocoumarins showed that the phototoxic effect of EmFHS is due to the high penetration ability of the emulsion into cells of spheroids. At the same time, it has a low degree of cumulation when administered intravenously. The obtained data suggest that EmFHS may be a promising treatment for PUVA therapy of various dermatological diseases. Additionally, the plant Heracleum sosnowskyi shows potential as a basis for creating new dosage forms with phototherapeutic effects.


Assuntos
Furocumarinas , Heracleum , Ratos , Animais , Fármacos Fotossensibilizantes , Metoxaleno , Emulsões
2.
Adv Healthc Mater ; 13(11): e2303686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262003

RESUMO

Effective treatment of drug-resistant bacteria infected wound has been a longstanding challenge for healthcare systems. In particular, the development of novel strategies for controllable delivery and smart release of antimicrobial agents is greatly demanded. Herein, the design of biodegradable microcapsules carrying bactericidal gold nanoclusters (AuNCs) as an attractive platform for the effective treatment of drug-resistant bacteria infective wounds is reported. AuNC capsules are fabricated via the well-controlled layer-by-layer strategy, which possess intrinsic near-infrared fluorescence and good biocompatibility. Importantly, these AuNC capsules exhibit strong, specific antibacterial activity toward both S. aureus and methicillin-resistant S. aureus (MRSA). Further mechanistic studies by fluorescence confocal imaging and inductively coupled plasma mass spectrometry reveal that these AuNC capsules will be degraded in the S. aureus environment rather than E. coli, which then controllably release the loaded cationic AuNCs to exert antibacterial effect. Consequently, these AuNC capsules show remarkable therapeutic effect for the MRSA infected wound on a mouse model, and intrinsic fluorescence property of AuNC capsules enables in situ visualization of wound dressings. This study suggests the great potential of microcapsule-based platform as smart carriers of bactericidal agents for the effective treatment of drug-resistant bacterial infection as well as other therapeutic purposes.


Assuntos
Antibacterianos , Ouro , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Ouro/química , Nanopartículas Metálicas/química , Cápsulas/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Cátions/química , Testes de Sensibilidade Microbiana
3.
Adv Mater ; 36(14): e2307675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158786

RESUMO

Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.


Assuntos
Sistemas de Liberação de Medicamentos , Fagocitose , Anisotropia , Distribuição Tecidual
4.
Nanomaterials (Basel) ; 13(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999330

RESUMO

Complex-structured polymeric microparticles hold significant promise as an advance in next-generation medicine mostly due to demand from developing targeted drug delivery. However, the conventional methods for producing these microparticles of defined size, shape, and sophisticated composition often face challenges in scalability, reliance on specialized components such as micro-patterned templates, or limited control over particle size distribution and cargo (functional payload) release kinetics. In this study, we introduce a novel and reliably scalable approach for manufacturing microparticles of defined structures and sizes with variable parameters. The concept behind this method involves the deposition of a specific number of polymer layers on a substrate with low surface energy. Each layer can serve as either the carrier for cargo or a programmable shell-former with predefined permeability. Subsequently, this layered structure is precisely cut into desired-size blanks (particle precursors) using a laser. The manufacturing process is completed by applying heat to the substrate, which results in sealing the edges of the blanks. The combination of the high surface tension of the molten polymer and the low surface energy of the substrate enables the formation of discrete particles, each possessing semi-spherical or other designed geometries determined by their internal composition. Such anisotropic microparticles are envisaged to have versatile applications.

5.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686471

RESUMO

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 µm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cápsulas , Comunicação Celular , Rastreamento de Células , Células Clonais , Corantes
6.
Biomacromolecules ; 24(7): 3051-3060, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37289998

RESUMO

A stimuli-responsive polymeric three-dimensional microstructured film (PTMF) is a 3D structure with an array of sealed chambers on its external surface. In this work, we demonstrate the use of PTMF as a laser-triggered stimulus-response system for local in vivo targeted blood vessels stimulation by vasoactive substances. The native vascular networks of the mouse mesentery were used as model tissues. Epinephrine and KCl were used as vasoactive agents that were sealed into individual chambers upon precipitation in the amount of pictograms. We demonstrated the method for non-damaged one-by-one chamber activation using a focused 532 nm laser light passed through biological tissues. To avoid laser-induced photothermal damage to biological tissues, the PTMF was functionalized with Nile Red dye, which effectively absorbs laser light. Chemically stimulated blood vessel fluctuations were analyzed using digital image processing methods. Hemodynamics changes were measured and visualized using the particle image velocimetry approach.


Assuntos
Lasers , Polímeros , Camundongos , Animais , Raios Infravermelhos
7.
ACS Nanosci Au ; 3(3): 256-265, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360846

RESUMO

Corticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system. The sandwich hydrogel contact lens consists of a polymer microchamber film made via soft lithography with an encapsulated corticosteroid, in this case, dexamethasone, located inside the contact lens. The developed delivery system showed sustained and controlled release of the drug. The central visual part of the lenses was cleared from the polylactic acid microchamber in order to maintain a clean central aperture similar to the cosmetic-colored hydrogel contact lenses.

8.
J Mater Chem B ; 11(17): 3860-3870, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013677

RESUMO

Transcutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity. Porous calcium carbonate (vaterite) submicron carriers and sonophoresis were utilized for this purpose. Transportation of the vaccine-loaded particles into hair follicles of mice was assessed in vivo via optical coherence tomography monitoring. The effectiveness of the designed immunization protocol was further demonstrated in an animal model by means of micro-neutralization and enzyme-linked immunosorbent assays. The titers of secreted virus-specific IgGs were compared to those obtained in response to intramuscular immunization using conventional influenza vaccine formulation demonstrating no statistically significant differences in antibody levels between the groups. The findings of our pilot study render the intra-follicular delivery of the inactivated influenza vaccine by means of vaterite carriers a promising alternative to invasive immunization.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Projetos Piloto , Administração Cutânea , Vacinação , Imunização/métodos
9.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769101

RESUMO

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Assuntos
Glomerulonefrite , Camundongos , Animais , Etanercepte/uso terapêutico , Cápsulas , Glomerulonefrite/patologia , Rim/patologia , Glomérulos Renais/patologia
10.
ACS Appl Mater Interfaces ; 14(46): 51579-51592, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367877

RESUMO

A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 µm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 µg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 µm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Cápsulas , Macrófagos , Rastreamento de Células
11.
Pharmaceutics ; 14(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36297579

RESUMO

In a modern high-tech medicine, drug-eluting polymer coatings are actively used to solve a wide range of problems, including the prevention of post-surgery infection, inflammatory, restenosis, thrombosis and many other implant-associated complications. For major assumptions, the drug elution mechanism is considered mainly to be driven by the degradation of the polymer matrix. This process is very environmentally dependent, unpredictable and often leads to a non-linear drug release kinetic. In the present work, we demonstrate how the laser microperforation of cargo-loaded biodegradable films could be used as a tool to achieve zero-order release kinetics with different elution rates. The effects of the laser-induced hole's diameter (10, 18, 22, 24 µm) and their density (0, 1, 2, 4 per sample) on release kinetic are studied. The linear dynamics of elution was measured for all perforation densities. Release rates were estimated to be 0.018 ± 0.01 µg/day, 0.211 ± 0.08 µg/day, 0.681 ± 0.1 µg/day and 1.19 ± 0.12 µg/day for groups with 0, 1, 2, 4 microperforations, respectively. The role of biodegradation of the polymer matrix is reduced only to the decomposition of the film over time with no major influence on elution rates.

12.
Pharmaceutics ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297621

RESUMO

Bladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient's quality of life. Additional local anti-inflammatory treatment may reduce the number of procedures requested and increase the attractiveness of this therapeutic strategy. Here, we report about an ultrathin biocompatible coating based on polylactic acid for Foley catheter balloons that can provide localized release of Prednol-L in the range of 56-99 µg in the BNC zone under conventional diagnostic ultrasound exposure. Note that the exposure of a transrectal probe with a conventional gray-scale ultrasound regimen with and without shear wave elastography (SWE) was comparably effective for Prednol-L release from the coating surface of a Foley catheter balloon. This strategy does not require additional manipulations by clinicians. The trigger for the drug release is the ultrasound exposure, which is applied for visualization of the balloon's location during the dilation process. In vivo experiments demonstrated the absence of negative effects of the usage of a coated Foley catheter for balloon dilation of the bladder neck and urethra.

13.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297899

RESUMO

Drug-eluting films made of bioresorbable polymers are a widely used tool of modern personalized medicine. However, most currently existing methods of producing coatings do not go beyond the laboratory, as they have low encapsulation efficiency and/or difficulties in scaling up. The PLACE (Printed Layered Adjustable Cargo Encapsulation) technology proposed in this article uses an additive approach for film manufacturing. PLACE technology is accessible, scalable, and reproducible in any laboratory. As a demonstration of the technology capabilities, we fabricated layered drug-eluting polyglycolic acid films containing different concentrations of Cefazolin antibiotic. The influence of the amount of loaded drug component on the film production process and the release kinetics was studied. The specific loading of drugs was significantly increased to 200-400 µg/cm2 while maintaining the uniform release of Cefazolin antibiotic in a dosage sufficient for local antimicrobial therapy for 14 days. The fact that the further increase in the drug amount results in the crystallization of a substance, which can lead to specific defects in the cover film formation and accelerated one-week cargo release, was also shown, and options for further technology development were proposed.

14.
Biomater Adv ; 136: 212762, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929328

RESUMO

Engineering of colloidal particles and capsules despite substantial progress is still facing a number of unsolved issues including low loading capacity, non-uniform size and shape of carriers, tailoring different functionalities and versatility to encapsulated cargo. In this work, we propose a method for defined-shaped functionally asymmetric polymer capsule fabrication based on a soft lithography approach. The developed capsules consist of two classes of polymers - the main part "cup" is made out of polyelectrolyte multilayers (PAH-PSS) and "lid" is made of biodegradable polyether (PLGA). Asymmetric capsules combine advantages from both traditional layer-by-layer capsules and recently developed printed "pelmeni" capsules. This combination provides stimuli-responsiveness due to polyelectrolyte multilayer properties differing from PLGA. The inner volume of capsules can be loaded with a variety of active compounds and the capsule's geometry is defined due to the soft-lithography method. Capsules have a core-shell structure and monodisperse size distribution. Three methods to trigger cargo release have been demonstrated, namely temperature treatment, ultrasonication and pH shift. Steroidal drug dexamethasone was used to illustrate the applicability of the systems for triggered drug release. The application of proposed asymmetric capsules includes but is not limited to pharmacology, diagnostics, sensors, micro- and nanoreactors and chemical actuators.


Assuntos
Polímeros , Cápsulas/química , Liberação Controlada de Fármacos , Polieletrólitos , Polímeros/química
15.
Pharmaceutics ; 14(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631642

RESUMO

The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 µm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.

16.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457052

RESUMO

In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible. Histological examination showed a low local irritant effect and no effect on the morphology of the internal organs. The efficiency of magnetic hyperthermia for the treatment of transplanted Walker 256 carcinoma was evaluated. The tumour was infiltrated with the synthesised particles and then treated with an alternating magnetic field. The survival rate was 85% in the studied therapy group of seven animals, while in the control group (without treatment), all animals died. The physicochemical and pharmaceutical properties of the synthesised fluid and the therapeutic results, as seen in the in vivo experiments, provide insights into therapeutic hyperthermia using injected magnetite nanoparticles.


Assuntos
Carcinoma , Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Hipertermia , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Ácido Oleico
17.
ACS Appl Bio Mater ; 5(5): 2411-2420, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35426657

RESUMO

The outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for in vitro and in vivo applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr3 and CsPbI3) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging. The obtained encapsulated PNCs demonstrate bright green emission at 510 nm (CsPbBr3) and red emission at 688 nm (CsPbI3) under one- and two-photon excitation, and they possess an enhanced stability in water and biological fluids (PBS, human serum) for a prolonged period of time (1 week). Further in vitro and in vivo experiments revealed enhanced stability of PNCs even after their introduction directly into the biological microenvironment (CT26 cells and DBA mice). The developed approach allows making a step toward stable, low-cost, and highly efficient bioimaging platforms that are spectrally tunable and have narrow emission.


Assuntos
Nanopartículas , Polímeros , Animais , Compostos de Cálcio , Camundongos , Camundongos Endogâmicos DBA , Nanopartículas/química , Óxidos , Titânio , Água/química
18.
Chem Biol Interact ; 357: 109880, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35271822

RESUMO

Sosnovsky's hogweed, Heracleum sosnowskyi has a high photosensitizing ability. Although Sosnovsky's hogweed is known as a poisonous plant, its chemical composition and phototoxicity are poorly studied. We analyzed the chemical composition of the Sosnovsky's hogweed juice that grew in natural conditions. It was found that the content of 8-methoxypsoralen in the juice is 1332.7 mg/L, and that of 5-methoxypsoralen is 34.2 mg/L. We have developed and analyzed liposomes containing furanocoumarins of Sosnovsky's hogweed juice and studied their photocytotoxicity in L929 mouse fibroblast cell culture. It was found that liposomes containing furanocoumarins of Sosnovsky's hogweed juice are more toxic for L929 cells in comparison with liposomal forms of pure substances 8-methoxypsoralen and 5-methoxypsoralen. It was found that when exposed to UV radiation at 365 nm at a dose of 22.2 J/cm2, the liposomal form of furanocoumarins Sosnovsky's hogweed is 3 times more toxic to L929 cells than in the dark. It was found that the photocytotoxic effect of liposomal furanocoumarins Sosnovsky's hogweed is a strongly stimulation of apoptosis.The data obtained suggest that the raw material of Sosnovsky's hogweed claims to be a source of furanocoumarins, and the liposomal form, given the hydrophobic properties of furanocoumarins, is very suitable for creating a phototherapeutic drug.


Assuntos
Furocumarinas , Heracleum , Animais , Furocumarinas/toxicidade , Heracleum/química , Lipossomos , Metoxaleno , Camundongos , Raios Ultravioleta
19.
Pharmaceutics ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834214

RESUMO

This work demonstrated for the first time the synthesis of novel chlorhexidine particles containing strontium and zinc, to provide an effective, affordable, and safe intervention in the treatment of recurrent infections found in Medicine and Dentistry. The CHX-SrCl2 and CHX-ZnCl2 particles were synthesized by co-precipitation of chlorhexidine diacetate (CHXD) and zinc chloride or strontium chloride, where particle size was manipulated by controlling processing time and temperature. The CHX-ZnCl2 and CHX-SrCl2 particles were characterized using SEM, FTIR, and XRD. UV-Vis using artificial saliva (pH 4 and pH 7) was used to measure the drug release and ICP-OES ion release. The antibacterial properties were examined against P. gingivalis, A. actinomycetemcomitans, and F. nucleatum subsp. Polymorphum, and cytotoxicity was evaluated using mouse fibroblast L929 cells. The novel particles were as safe as commercial CHXD, with antibacterial activity against a range of oral pathogens. UV-Vis results run in artificial saliva (pH 4 and pH 7) indicated a higher release rate in acidic rather than neutral conditions. The CHX-ZnCl2 particles provided the functionality of a smart Zinc and CHX release, with respect to environmental pH, allowing responsive antibacterial applications in the field of medicine and dentistry.

20.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34610738

RESUMO

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Polímeros , Cápsulas , Campos Magnéticos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...