RESUMO
Grain yield (YLD) is a function of the total biomass (BM) and of partitioning the biomass by grains, i.e., the harvest index (HI). The most critical developmental stage for their determination is the flowering time, which mainly depends on the vernalization requirement (Vrn) and photoperiod sensitivity genes (Ppd) loci. Allelic variants at the Vrn, Ppd, and earliness per se (Eps) genes of elite spring wheat genotypes included in High Biomass Association Panel (HiBAP) I and II were used to estimate their effects on the phenological stages BM, HI, and YLD. Each panel was grown for two consecutive years in Northwest Mexico. Spring alleles at Vrn-1 had the largest effect on shortening the time to anthesis, and the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD in both panels. In addition, alleles at TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in HiBAP I and II, respectively. When the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits mainly related to grain number. The favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders' toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars.
RESUMO
Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.
Assuntos
Melhoramento Vegetal , Triticum , Clima , Secas , Pesquisa Translacional Biomédica , Triticum/genéticaRESUMO
Unfortunately, the Fig. 1 of this original article was incorrectly published. The corrected Fig. 1 is given below.
RESUMO
Understanding the genetic bases of economically important traits is fundamentally important in enhancing genetic gains in durum wheat. In this study, a durum panel of 208 lines (comprised of elite materials and exotics from the International Maize and Wheat Improvement Center gene bank) were subjected to genome wide association study (GWAS) using 6,211 DArTseq single nucleotide polymorphisms (SNPs). The panel was phenotyped under yield potential (YP), drought stress (DT), and heat stress (HT) conditions for 2 years. Mean yield of the panel was reduced by 72% (to 1.64 t/ha) under HT and by 60% (to 2.33 t/ha) under DT, compared to YP (5.79 t/ha). Whereas, the mean yield of the panel under HT was 30% less than under DT. GWAS identified the largest number of significant marker-trait associations on chromosomes 2A and 2B with p-values 10-06 to 10-03 and the markers from the whole study explained 7-25% variation in the traits. Common markers were identified for stress tolerance indices: stress susceptibility index, stress tolerance, and stress tolerance index estimated for the traits under DT (82 cM on 2B) and HT (68 and 83 cM on 3B; 25 cM on 7A). GWAS of irrigated (YP and HT combined), stressed (DT and HT combined), combined analysis of three environments (YP + DT + HT), and its comparison with trait per se and stress indices identified QTL hotspots on chromosomes 2A (54-70 cM) and 2B (75-82 cM). This study enhances our knowledge about the molecular markers associated with grain yield and its components under different stress conditions. It identifies several marker-trait associations for further exploration and validation for marker-assisted breeding.
RESUMO
KEY MESSAGE: GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight and grain number. Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten environments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci-6A (85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)-were associated with multiple traits. The study identified two loci that showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79-85 cM) harbored a gene TaGW2-6A. We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.
Assuntos
Meio Ambiente , Genética Populacional , Genoma de Planta , Sementes/crescimento & desenvolvimento , Triticum/genética , Alelos , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimentoRESUMO
Developing genomic selection (GS) models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flowering (TTF) in 18 international environments (year-location combinations) in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1), and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2). Genomic prediction models, including genotype × environment (G×E) interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31), GN (0.32), GW (0.45), and TTF (0.27). For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38), GN (0.43), GW (0.63), and TTF (0.53). Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials.
Assuntos
Interação Gene-Ambiente , Genômica , Seleção Genética , Triticum/genética , África do Norte , Ásia , Cruzamento , Genoma de Planta , Genótipo , México , Linhagem , Fenótipo , Característica Quantitativa Herdável , Estações do Ano , Triticum/crescimento & desenvolvimentoRESUMO
The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.