Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 181: 108297, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939438

RESUMO

INTRODUCTION: In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study. METHODS: First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields. RESULTS: EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake. CONCLUSION: In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.


Assuntos
Praguicidas , Piretrinas , Humanos , Adulto , Praguicidas/análise , República Tcheca , Exposição Ambiental/análise , Piretrinas/urina , Organofosfatos/urina
2.
Environ Res ; 222: 115368, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716809

RESUMO

Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.


Assuntos
Praguicidas , Piretrinas , Humanos , Adulto , Praguicidas/análise , Metilação de DNA , República Tcheca , Exposição Ambiental/análise , Piretrinas/urina , Biomarcadores/metabolismo , Estresse Oxidativo
3.
Int J Hyg Environ Health ; 248: 114105, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563507

RESUMO

Humans are exposed to a mixture of pesticides through diet as well as through the environment. We conducted a suspect-screening based study to describe the probability of (concomitant) exposure to a set of pesticide profiles in five European countries (Latvia, Hungary, Czech Republic, Spain and the Netherlands). We explored whether living in an agricultural area (compared to living in a peri-urban area), being a a child (compared to being an adult), and the season in which the urine sample was collected had an impact on the probability of detection of pesticides (-metabolites). In total 2088 urine samples were collected from 1050 participants (525 parent-child pairs) and analyzed through harmonized suspect screening by five different laboratories. Fourty pesticide biomarkers (either pesticide metabolites or the parent pesticides as such) relating to 29 pesticides were identified at high levels of confidence in samples across all study sites. Most frequently detected were biomarkers related to the parent pesticides acetamiprid and chlorpropham. Other biomarkers with high detection rates in at least four countries related to the parent pesticides boscalid, fludioxonil, pirimiphos-methyl, pyrimethanil, clothianidin, fluazifop and propamocarb. In 84% of the samples at least two different pesticides were detected. The median number of detected pesticides in the urine samples was 3, and the maximum was 13 pesticides detected in a single sample. The most frequently co-occurring substances were acetamiprid with chlorpropham (in 62 urine samples), and acetamiprid with tebuconazole (30 samples). Some variation in the probability of detection of pesticides (-metabolites) was observed with living in an agricultural area or season of urine sampling, though no consistent patterns were observed. We did observe differences in the probability of detection of a pesticide (metabolite) among children compared to adults, suggesting a different exposure and/or elimination patterns between adults and children. This survey demonstrates the feasibility of conducting a harmonized pan-European sample collection, combined with suspect screening to provide insight in the presence of exposure to pesticide mixtures in the European population, including agricultural areas. Future improvements could come from improved (harmonized) quantification of pesticide levels.


Assuntos
Praguicidas , Adulto , Humanos , Praguicidas/urina , Clorprofam , Agricultura , Europa (Continente) , Biomarcadores , Exposição Ambiental/análise
4.
Front Public Health ; 10: 1006536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438287

RESUMO

Background: The impact of the urban environment on human health is a contemporary subject of environmental research. Air pollution is often considered a leading environmental driver. However, a plethora of other factors within the urban exposome may be involved. At the same time, the resolution of spatial data is also an important facet to consider. Generally, systematic tools for accurate health risk assessment in the urban environment are missing or are not implemented. Methods: The long-term impact of air quality (PM10, PM2.5, NO2, benzene, and SO2) on respiratory and cardiovascular health was assessed with a log-linear model. We used the most accurate health data in high city scale spatial resolution over the period 2010 to 2018. Selected external exposome parameters were also included in the analysis. Results: Statistically significant associations between air pollution and the health of the urban population were found. The strongest association was between benzene and the incidence of bronchitis in the adult population [RR 1.552 95% CI (1.415-1.704) per 0.5 µg/m3 change in benzene concentration]. A similar relation was observed between NO2 and the same health condition [RR 1.483 95% CI (1.227-1.792) per 8.9 µg/m3 of change in NO2]. Other weaker associations were also found between asthma in children and PMs, NO2, or benzene. Cardiovascular-related hospitalizations in the general population were linked with NO2 [RR 1.218 95% CI (1.119-1.325) per 9.7 µg/m3 change in NO2]. The remaining pollutants were slightly less but still significantly associated with cardiovascular-related hospitalizations. Conclusion: Our findings are mostly highly statistically significant (p ≤ 0.001) and are in line with current literature on the adverse effects of air pollution on the human population. The results highlight the need for continual improvements in air quality. We propose the implementation of this approach as a systematic tool for the investigation of possible health risks over a long period of time. However, further research involving other variables is an essential step toward understanding the complex urban exposome and its implications for human health. An increase in data spatial resolution is especially important in this respect as well as for improving city health risk management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Criança , Humanos , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Benzeno/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades/epidemiologia
5.
Environ Int ; 168: 107452, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994799

RESUMO

Within the Human Biomonitoring for Europe initiative (HBM4EU), a study to determine new biomarkers of exposure to pesticides and to assess exposure patterns was conducted. Human urine samples (N = 2,088) were collected from five European regions in two different seasons. The objective of the study was to identify pesticides and their metabolites in collected urine samples with a harmonized suspect screening approach based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) applied in five laboratories. A combined data processing workflow included comprehensive data reduction, correction of mass error and retention time (RT) drifts, isotopic pattern analysis, adduct and elemental composition annotation, finalized by a mining of the elemental compositions for possible annotations of pesticide metabolites. The obtained tentative annotations (n = 498) were used for acquiring representative data-dependent tandem mass spectra (MS2) and verified by spectral comparison to reference spectra generated from commercially available reference standards or produced through human liver S9 in vitro incubation experiments. 14 parent pesticides and 71 metabolites (including 16 glucuronide and 11 sulfate conjugates) were detected. Collectively these related to 46 unique pesticides. For the remaining tentative annotations either (i) no data-dependent MS2 spectra could be acquired, (ii) the spectral purity was too low for sufficient matching, or (iii) RTs indicated a wrong annotation, leaving potential for more pesticides and/or their metabolites being confirmed in further studies. Thus, the reported results are reflecting only a part of the possible pesticide exposure.

6.
Environ Res ; 214(Pt 3): 114002, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940232

RESUMO

Current-use pesticides (CUP) are extensively applied in both agricultural and urban settings. Exposure occurs mainly via the dietary pathway; however, other pathways such as inhalation or skin contact are also important. In this study, urinary levels of 12 CUP metabolites were investigated among 110 parent-child pairs during two seasons of 2020. Metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH) were detected in more than 60% of the samples. Chlorpyrifos metabolite was found at the highest concentration and tebuconazole was detected in almost all samples. CUP urinary metabolite levels were significantly higher in children in comparison to adults, except for tebuconazole, which was similar in both groups. In children, winter samples had significantly higher concentrations of pyrethroid and chlorpyrifos metabolites in comparison to the summer samples, but in adults, only chlorpyrifos metabolite concentrations were higher in the winter. No association between CUP urinary metabolite levels and proximity/surface of agricultural areas around residences was observed. Based on our findings, we suspect that CUP exposure is mainly driven by diet and that the effect of environmental exposure is less significant. Daily Intakes were estimated with three possible scenarios considering the amount of the metabolite excreted in urine and were compared to Acceptable Daily Intake values. Using a realistic scenario, exposure to chlorpyrifos exhibited the highest health risk, but still within a safe level. The Acceptable Daily Intake was exceeded only in one child in the case of cypermethrin. The cumulative risk assessment of pesticide mixtures having an effect on the nervous system, based on the total margin of exposure calculations, did not indicate any risk. The overall risk associated with pesticide exposure in the observed population was low. However, the risk observed using the worst-case scenario suggests the need for continuous evaluation of human exposure to such compounds, especially in children.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Piretrinas , Adulto , Biomarcadores/urina , Clorpirifos/urina , República Tcheca , Exposição Ambiental/análise , Humanos , Inseticidas/urina , Praguicidas/urina , Piretrinas/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...