Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 37(3): 631-648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38289415

RESUMO

Metal pollutants are a growing concern due to increased use in mining and other industrial processes. Moreover, the use of metals in daily life is becoming increasingly prevalent. Metals such as manganese (Mn), cobalt (Co), and nickel (Ni) are toxic in high amounts whereas lead (Pb) and cadmium (Cd) are acutely toxic at low µM concentrations. These metals are associated with system dysfunction in humans including cancer, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, and other cellular process'. One known but lesser studied target of these metals are lipids that are key membrane building blocks or serve signalling functions. It was shown that Mn, Co, Ni, Pb, and Cd cause rigidification of liposomes and increase the phase transition in membranes composed of both saturated or partly unsaturated phosphatidic acid (PA) and phosphatidylserine (PS). The selected metals showed differential effects that were more pronounced on saturated lipids. In addition, more rigidity was induced in the biologically relevant liquid-crystalline phase. Moreover, metal affinity, induced rigidification and liposome size increases also varied with the headgroup architecture, whereby the carboxyl group of PS appeared to play an important role. Thus, it can be inferred that Mn, Co, Ni, Cd, and Pb may have preferred binding coordination with the lipid headgroup, degree of acyl chain unsaturation, and membrane phase.


Assuntos
Lipossomos , Ácidos Fosfatídicos , Fosfatidilserinas , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Lipossomos/química , Humanos , Metais Pesados/química , Íons/química
2.
Bioessays ; 46(2): e2300182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38044581

RESUMO

Transport of macromolecules from the nucleus to the cytoplasm is essential for nearly all cellular and developmental events, and when mis-regulated, is associated with diseases, tumor formation/growth, and cancer progression. Nuclear Envelope (NE)-budding is a newly appreciated nuclear export pathway for large macromolecular machineries, including those assembled to allow co-regulation of functionally related components, that bypasses canonical nuclear export through nuclear pores. In this pathway, large macromolecular complexes are enveloped by the inner nuclear membrane, transverse the perinuclear space, and then exit through the outer nuclear membrane to release its contents into the cytoplasm. NE-budding is a conserved process and shares many features with nuclear egress mechanisms used by herpesviruses. Despite its biological importance and clinical relevance, little is yet known about the regulatory and structural machineries that allow NE-budding to occur in any system. Here we summarize what is currently known or proposed for this intriguing nuclear export process.


Assuntos
Herpesviridae , Membrana Nuclear , Membrana Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Herpesviridae/metabolismo , Citoplasma/metabolismo , Núcleo Celular/metabolismo
3.
Langmuir ; 39(30): 10406-10419, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462214

RESUMO

Microbial nanotechnology is an expanding research area devoted to producing biogenic metal and metalloid nanomaterials (NMs) using microorganisms. Often, biogenic NMs are explored as antimicrobial, anticancer, or antioxidant agents. Yet, most studies focus on their applications rather than the underlying mechanism of action or toxicity. Here, we evaluate the toxicity of our well-characterized biogenic selenium nanoparticles (bSeNPs) produced by the Stenotrophomonas maltophilia strain SeITE02 against the model yeast Saccharomyces cerevisiae comparing it with chemogenic SeNPs (cSeNPs). Knowing from previous studies that the biogenic extract contained bSeNPs in an organic material (OM) and supported here by Fourier transform infrared spectroscopy, we removed and incubated it with cSeNPs (cSeNPs_OM) to assess its influence on the toxicity of these formulations. Specifically, we focused on the first stages of the eukaryotic cell exposure to these samples─i.e., their interaction with the cell lipid membrane, which was mimicked by preparing vesicles from yeast polar lipid extract or phosphatidylcholine lipids. Fluidity changes derived from biogenic and chemogenic samples revealed that the bSeNP extract mediated the overall rigidification of lipid vesicles, while cSeNPs showed negligible effects. The OM and cSeNPs_OM induced similar modifications to the bSeNP extract, reiterating the need to consider the OM influence on the physical-chemical and biological properties of bSeNP extracts.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Selênio , Selênio/toxicidade , Selênio/química , Células Eucarióticas/metabolismo , Saccharomyces cerevisiae , Nanopartículas/química , Lipídeos
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674581

RESUMO

Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of one metal at a time. Laurdan generalized polarization measured the membrane fluidity, while dynamic light scattering reported liposome size changes complemented by zeta potential. All metals induced membrane rigidity and increased liposome sizes across all systems. Mn had the strongest effect overall, but Mg was comparable for DMPS. Lipid side chain architecture was important as GP values for binary mixtures were higher than expected from the sum of values for single additions added to POPS but smaller for DMPS. Sequential additions were predominantly different for Ca:Mg mixtures. Mn induced the strongest increase of liposome size in saturated lipids whereas Ca effects dominated unsaturated matrices. Binary additions induced larger sizes than the sum of single additions for POPS, but much lower changes in DMPA. The order of addition was relevant for PS systems. Thus, lipid structure determines metal effects, but their impact is modulated by other ions. Thus, metal effects may differ with the local lipid architecture and metal concentrations within cells.


Assuntos
Cálcio , Lipossomos , Lipossomos/química , Cálcio/farmacologia , Magnésio/farmacologia , Manganês/farmacologia , Fluidez de Membrana , Cálcio da Dieta/farmacologia , Lipídeos/química
5.
Eur Biophys J ; 51(3): 205-223, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35166865

RESUMO

Metal ion-membrane interactions have gained appreciable attention over the years resulting in increasing investigations into the mode of action of toxic and essential metals. More work has focused on essential ions like Ca or Mg and toxic metals like Cd and Pb, whereas this study investigates the effects of the abundant essential trace metal manganese with model lipid systems by screening zwitterionic and anionic glycerophospholipids. Despite its essentiality, deleterious impact towards cell survival is known under Mn stress. The fluorescent dyes Laurdan and diphenylhexatriene were used to assess changes in membrane fluidity both in the head group and hydrophobic core region of the membrane, respectively. Mn-rigidified membranes composed of the anionic phospholipids, phosphatidic acid, phosphatidylglycerol, cardiolipin, and phosphatidylserine. Strong binding resulted in large shifts of the phase transition temperature. The increase was in the order phosphatidylserine > phosphatidylglycerol > cardiolipin, and in all cases, saturated analogues > mono-unsaturated forms. Dynamic light scattering measurements revealed that Mn caused extensive aggregation of liposomes composed of saturated analogues of phosphatidic acid and phosphatidylserine, whilst the mono-unsaturated analogue had significant membrane swelling. Increased membrane rigidity may interfere with permeability of ions and small molecules, possibly disrupting cellular homeostasis. Moreover, liposome size changes could indicate fusion, which could also be detrimental to cellular transport. Overall, this study provided further understanding into the effects of Mn with biomembranes, whereby the altered membrane properties are consequential to the proper structural and signalling functions of membrane lipids.


Assuntos
Lipossomos , Manganês , Cardiolipinas/farmacologia , Íons/farmacologia , Lipossomos/química , Manganês/farmacologia , Fluidez de Membrana , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/farmacologia , Fosfatidilgliceróis/química , Fosfatidilserinas/farmacologia , Fosfolipídeos/química
6.
BBA Adv ; 1: 100021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082006

RESUMO

This work assessed effects of metal binding on membrane fluidity, liposome size, and lateral organization in biomimetic membranes composed of 1 mol% of selected phosphorylated phosphoinositides in each system. Representative examples of phosphoinositide phosphate, bisphosphate and triphosphate were investigated. These include phosphatidylinositol-(4,5)-bisphosphate, an important signaling lipid constituting a minor component in plasma membranes whereas phosphatidylinositol-(4,5)-bisphosphate clusters support the propagation of secondary messengers in numerous signaling pathways. The high negative charge of phosphoinositides facilitates electrostatic interactions with metals. Lipids are increasingly identified as toxicological targets for divalent metals, which potentially alter lipid packing and domain formation. Exposure to heavy metals, such as lead and cadmium or elevated levels of essential metals, like cobalt, nickel, and manganese, implicated with various toxic effects were investigated.  Phosphatidylinositol-(4)-phosphate and phosphatidylinositol-(3,4,5)-triphosphate containing membranes are rigidified by lead, cobalt, and manganese whilst cadmium and nickel enhanced fluidity of membranes containing phosphatidylinositol-(4,5)-bisphosphate. Only cobalt induced liposome aggregation. All metals enhanced lipid clustering in phosphatidylinositol-(3,4,5)-triphosphate systems, cobalt in phosphatidylinositol-(4,5)-bisphosphate systems, while all metals showed limited changes in lateral film organization in phosphatidylinositol-(4)-phosphate matrices. These observed changes are relevant from the biophysical perspective as interference with the spatiotemporal formation of intricate domains composed of important signaling lipids may contribute to metal toxicity.

7.
Biochim Biophys Acta Biomembr ; 1862(8): 183250, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126229

RESUMO

Anthropogenic activity has increased human exposure to metals and resulted in metal induced toxicity. Essential trace elements like cobalt (Co), nickel (Ni), and manganese (Mn) are best known for their roles as important cofactors in many enzymes involved in signalling, metabolism, and response to oxidative stress. However, deficiencies as well as long-term overexposure to these metals can result in negative health effects. Co has been associated with cardiomyopathy, lung disease, and hearing damage, while Ni is a known carcinogen, as well as a common sensitizing metal. Mn is best classified as a neurotoxicant that causes a disorder alike to idiopathic Parkinson's disease known as Manganism. Although the mechanisms of Co, Ni, and Mn toxicity are complex and have yet to be fully elucidated, research over the years has provided useful insights into understanding metal-induced detrimental effects at the cellular and molecular level. One area of research that has been explored in less detail are metal interactions with lipids and biological membranes, which are a potentially critical target as membranes are the first point of contact for cells. This review covers the current understandings of Co, Ni and Mn toxicity, in terms of human exposure, homeostasis and mechanisms of transport, potential cellular targets, and, of primary focus, metal interactions with lipid and biomembranes. A variety of effects like membrane rigidification, leakage affecting membrane potentials, lipid phase changes, alterations in lipid metabolism and changes of cellular morphology illustrate the vast potential for metal-based membrane effects contributing to their toxicity.


Assuntos
Membrana Celular/efeitos dos fármacos , Lipídeos/química , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Membrana Celular/química , Cobalto/toxicidade , Homeostase/efeitos dos fármacos , Humanos , Manganês/toxicidade , Níquel/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...