Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Front Cardiovasc Med ; 10: 1194645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351284

RESUMO

Cardioplegic cardioprotection strategies used during paediatric open-heart surgery remain suboptimal. Sildenafil, a phosphodiesterase 5 (PDE-5) inhibitor, has been shown to be cardioprotective against ischemia/reperfusion injury in a variety of experimental models and this study therefore tested the efficacy of supplementation of cardioplegia with sildenafil in a piglet model of cardiopulmonary bypass and arrest, using both cold and warm cardioplegia protocols. Piglets were anaesthetized and placed on coronary pulmonary bypass (CPB), the aorta cross-clamped and the hearts arrested for 60 min with cardioplegia with or without sildenafil (10 nM). Twenty minutes after removal of cross clamp (reperfusion), attempts were made to wean the pigs from CPB. Termination was carried out after 60 min reperfusion. Throughout the protocol blood and left ventricular tissue samples were taken for analysis of selected metabolites (using HPLC) and troponin I. In both the cold and warm cardioplegia protocols there was evidence that sildenafil supplementation resulted in faster recovery of ATP levels, improved energy charge (a measure of metabolic flux) and altered release of hypoxanthine and inosine, two purine catabolites. There was no effect on troponin release within the studied short timeframe. In conclusion, sildenafil supplementation of cardioplegia resulted in improved cardiac energetics in a translational animal model of paediatric CPB surgery.

3.
Perfusion ; : 2676591231157269, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794486

RESUMO

INTRODUCTION: Cardiac surgery with cardiopulmonary bypass and cardioplegic arrest is known to be responsible for ischaemia and reperfusion organ injury. In a previous study, ProMPT, in patients undergoing coronary artery bypass or aortic valve surgery we demonstrated improved cardiac protection when supplementing the cardioplegia solution with propofol (6 mcg/ml). The aim of the ProMPT2 study is to determine whether higher levels of propofol added to the cardioplegia could result in increased cardiac protection. METHODS AND ANALYSIS: The ProMPT2 study is a multi-centre, parallel, three-group, randomised controlled trial in adults undergoing non-emergency isolated coronary artery bypass graft surgery with cardiopulmonary bypass. A total of 240 patients will be randomised in a 1:1:1 ratio to receive either cardioplegia supplementation with high dose of propofol (12 mcg/ml), low dose of propofol (6 mcg/ml) or placebo (saline). The primary outcome is myocardial injury, assessed by serial measurements of myocardial troponin T up to 48 hours after surgery. Secondary outcomes include biomarkers of renal function (creatinine) and metabolism (lactate). ETHICS AND DISSEMINATION: The trial received research ethics approval from South Central - Berkshire B Research Ethics Committee and Medicines and Healthcare products Regulatory Agency in September 2018. Any findings will be shared though peer-reviewed publications and presented at international and national meetings. Participants will be informed of results through patient organisations and newsletters. TRIAL REGISTRATION: ISRCTN15255199. Registered in March 2019.

4.
Front Cardiovasc Med ; 9: 911557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935655

RESUMO

Introduction: Changes in cardiac metabolites in adult patients undergoing open-heart surgery using ischemic cardioplegic arrest have largely been reported for non-ventricular tissue or diseased left ventricular tissue, with few studies attempting to assess such changes in both ventricular chambers. It is also unknown whether such changes are altered in different pathologies or linked to the degree of reperfusion injury and inflammatory response. The aim of the present work was to address these issues by monitoring myocardial metabolites in both ventricles and to establish whether these changes are linked to reperfusion injury and inflammatory/stress response in patients undergoing surgery using cold blood cardioplegia for either coronary artery bypass graft (CABG, n = 25) or aortic valve replacement (AVR, n = 16). Methods: Ventricular biopsies from both left (LV) and right (RV) ventricles were collected before ischemic cardioplegic arrest and 20 min after reperfusion. The biopsies were processed for measuring selected metabolites (adenine nucleotides, purines, and amino acids) using HPLC. Blood markers of cardiac injury (Troponin I, cTnI), inflammation (IL- 6, IL-8, Il-10, and TNFα, measured using Multiplex) and oxidative stress (Myeloperoxidase, MPO) were measured pre- and up to 72 hours post-operatively. Results: The CABG group had a significantly shorter ischemic cardioplegic arrest time (38.6 ± 2.3 min) compared to AVR group (63.0 ± 4.9 min, p = 2 x 10-6). Cardiac injury (cTnI release) was similar for both CABG and AVR groups. The inflammatory markers IL-6 and Il-8 were significantly higher in CABG patients compared to AVR patients. Metabolic markers of cardiac ischemic stress were relatively and significantly more altered in the LV of CABG patients. Comparing diabetic and non-diabetic CABG patients shows that only the RV of diabetic patients sustained major ischemic stress during reperfusion and that diabetic patients had a significantly higher inflammatory response. Discussion: CABG patients sustain relatively more ischemic stress, systemic inflammatory response and similar injury and oxidative stress compared to AVR patients despite having significantly shorter cross-clamp time. The higher inflammatory response in CABG patients appears to be at least partly driven by a higher incidence of diabetes amongst CABG patients. In addition to pathology, the use of cold blood cardioplegic arrest may underlie these differences.

5.
Front Cardiovasc Med ; 9: 849675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419441

RESUMO

Background and Aims: Atherosclerosis is a chronic inflammatory disease that remains the leading cause of morbidity and mortality worldwide. Despite decades of research into the development and progression of this disease, current management and treatment approaches remain unsatisfactory and further studies are required to understand the exact pathophysiology. This review aims to provide a comprehensive assessment of currently published data utilizing single-cell and next-generation sequencing techniques to identify key cellular and molecular contributions to atherosclerosis and vascular inflammation. Methods: Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until February 2022. A narrative synthesis of all included studies was performed for all included studies. Quality assessment and risk of bias analysis was evaluated using the ARRIVE and SYRCLE checklist tools. Results: Thirty-four studies were eligible for narrative synthesis, with 16 articles utilizing single-cell exclusively, 10 utilizing next-generation sequencing and 8 using a combination of these approaches. Studies investigated numerous targets, ranging from exploratory tissue and plaque analysis, cell phenotype investigation and physiological/hemodynamic contributions to disease progression at both the single-cell and whole genome level. A significant area of focus was placed on smooth muscle cell, macrophage, and stem/progenitor contributions to disease, with little focus placed on contributions of other cell types including lymphocytes and endothelial cells. A significant level of heterogeneity exists in the outcomes from single-cell sequencing of similar samples, leading to inter-sample and inter-study variation. Conclusions: Single-cell and next-generation sequencing methodologies offer novel means of elucidating atherosclerosis with significantly higher resolution than previous methodologies. These approaches also show significant potential for translatability into other vascular disease states, by facilitating cell-specific gene expression profiles between disease states. Implementation of these technologies may offer novel approaches to understanding the disease pathophysiology and improving disease prevention, management, and treatment.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021229960, identifier: CRD42021229960.

6.
Int J Mol Med ; 49(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35425992

RESUMO

Our earlier work has shown inter­disease and intra­disease differences in the cardiac proteome between right (RV) and left (LV) ventricles of patients with aortic valve stenosis (AVS) or coronary artery disease (CAD). Whether disease remodeling also affects acute changes occuring in the proteome during surgical intervention is unknown. This study investigated the effects of cardioplegic arrest on cardiac proteins/phosphoproteins in LV and RV of CAD (n=6) and AVS (n=6) patients undergoing cardiac surgery. LV and RV biopsies were collected during surgery before ischemic cold blood cardioplegic arrest (pre) and 20 min after reperfusion (post). Tissues were snap frozen, proteins extracted, and the extracts were used for proteomic and phosphoproteomic analysis using Tandem Mass Tag (TMT) analysis. The results were analysed using QuickGO and Ingenuity Pathway Analysis softwares. For each comparision, our proteomic analysis identified more than 3,000 proteins which could be detected in both the pre and Post samples. Cardioplegic arrest and reperfusion were associated with significant differential expression of 24 (LV) and 120 (RV) proteins in the CAD patients, which were linked to mitochondrial function, inflammation and cardiac contraction. By contrast, AVS patients showed differential expression of only 3 LV proteins and 2 RV proteins, despite a significantly longer duration of ischaemic cardioplegic arrest. The relative expression of 41 phosphoproteins was significantly altered in CAD patients, with 18 phosphoproteins showing altered expression in AVS patients. Inflammatory pathways were implicated in the changes in phosphoprotein expression in both groups. Inter­disease comparison for the same ventricular chamber at both timepoints revealed differences relating to inflammation and adrenergic and calcium signalling. In conclusion, the present study found that ischemic arrest and reperfusion trigger different changes in the proteomes and phosphoproteomes of LV and RV of CAD and AVS patients undergoing surgery, with markedly more changes in CAD patients despite a significantly shorter ischaemic period.


Assuntos
Valvopatia Aórtica , Estenose da Valva Aórtica , Estenose da Valva Aórtica/cirurgia , Humanos , Inflamação , Fosfoproteínas , Proteoma , Proteômica , Reperfusão
7.
Front Cardiovasc Med ; 9: 813904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355976

RESUMO

Background: Mature cardiomyocytes are unable to proliferate, preventing the injured adult heart from repairing itself. Studies in rodents have suggested that the extracellular matrix protein agrin promotes cardiomyocyte proliferation in the developing heart and that agrin expression is downregulated shortly after birth, resulting in the cessation of proliferation. Agrin based therapies have proven successful at inducing repair in animal models of cardiac injury, however whether similar pathways exist in the human heart is unknown. Methods: Right ventricular (RV) biopsies were collected from 40 patients undergoing surgery for congenital heart disease and the expression of agrin and associated proteins was investigated. Results: Agrin transcripts were found in all samples and their levels were significantly negatively correlated to age (p = 0.026), as were laminin transcripts (p = 0.023), whereas no such correlation was found for the other proteins analyzed. No significant correlations for any of the proteins were found when grouping patients by their gender or pathology. Immunohistochemistry and western blots to detect and localize agrin and the other proteins under analysis in RV tissue, confirmed their presence in patients of all ages. Conclusions: We show that agrin is progressively downregulated with age in human RV tissue but not as dramatically as has been demonstrated in mice; highlighting both similarities and differences to findings in rodents. Our results lay the groundwork for future studies exploring the potential of agrin-based therapies in the repair of damaged human hearts.

8.
Diabetologia ; 65(5): 879-894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35211778

RESUMO

AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Angiopoietina-1/metabolismo , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Microcirculação , Ratos
9.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163640

RESUMO

Metabolic and ionic changes during ischaemia predispose the heart to the damaging effects of reperfusion. Such changes and the resulting injury differ between immature and adult hearts. Therefore, cardioprotective strategies for adults must be tested in immature hearts. We have recently shown that the simultaneous activation of protein kinase A (PKA) and exchange protein activated by cAMP (Epac) confers marked cardioprotection in adult hearts. The aim of this study is to investigate the efficacy of this intervention in immature hearts and determine whether the mitochondrial permeability transition pore (MPTP) is involved. Isolated perfused Langendorff hearts from both adult and immature rats were exposed to global ischaemia and reperfusion injury (I/R) following control perfusion or perfusion after an equilibration period with activators of PKA and/or Epac. Functional outcome and reperfusion injury were measured and in parallel, mitochondria were isolated following 5 min of reperfusion to determine whether cardioprotective interventions involved changes in MPTP opening behaviour. Perfusion for 5 min preceding ischaemia of injury-matched adult and immature hearts with 5 µM 8-Br (8-Br-cAMP-AM), an activator of both PKA and Epac, led to significant reduction in post-reperfusion CK release and infarct size. Perfusion with this agent also led to a reduction in MPTP opening propensity in both adult and immature hearts. These data show that immature hearts are innately more resistant to I/R injury than adults, and that this is due to a reduced tendency of MPTP opening following reperfusion. Furthermore, simultaneous stimulation of PKA and Epac causes cardioprotection, which is additive to the innate resistance.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
10.
Biomedicines ; 10(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35052807

RESUMO

Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)-dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease.

11.
Perfusion ; 37(6): 582-589, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899586

RESUMO

Vascular endothelial cell stimulation is associated with the activation of different signalling pathways and transcription factors. Acute shear stress is known to induce different pro-inflammatory mediators such as IL-8. Nrf2 is activated by prolonged high shear stress promoting an antiinflammatory and athero-protective environment. However, little is known about the impact of acute shear stress on Nrf2 and Keap1 function and its role in IL-8 regulation. We aimed to examine Nrf2-Keap1 complex activation in-vitro and its role in regulating IL-8 transcripts under acute arterial shear stress (12 dyn/cm2) in venous endothelial cells (ECs). We note that acute high shear stress caused a significant upregulation of Nrf2 target genes, HO-1 and GCLM and an increased IL-8 upregulation at 90 and 120 minutes. Mechanistically, acute high shear did not affect Nrf2 nuclear translocation but resulted in reduced nuclear Keap1, suggesting that the reduction in nuclear Keap1 may result in increased free nuclear nrf2 to induce transcription. Consistently, the suppression of Keap1 using shRNA (shKeap1) resulted in significant upregulation of IL-8 transcripts in response to acute shear stress. Interestingly; the over expression of Nrf2 using Nrf2-Ad-WT or Sulforaphane was also associated with significant upregulation of IL-8 compared to controls. This study highlights the role of Keap1 in Nrf2 activation under shear stress and indicates that activation of Nrf2 may be deleterious in ECs in the context of acute haemodynamic injury.


Assuntos
Células Endoteliais , Fator 2 Relacionado a NF-E2 , Células Endoteliais/metabolismo , Humanos , Interleucina-8/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Estresse Mecânico
12.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360749

RESUMO

Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3-MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ-mPTP (calcium/calmodulin-dependent protein kinase IIδ-mitochondrial permeability transition pore), PGAM5-Drp1 (phosphoglycerate mutase 5-dynamin-related protein 1) and JNK-BNIP3 (c-Jun N-terminal kinase-BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar
13.
Eur J Pharmacol ; 907: 174302, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217713

RESUMO

Coronary artery occlusion (45 min) and reperfusion (2 h) was performed in rats anesthetized with α-chloralose. Opioid receptor agonists were administered intravenously 5 min before reperfusion, while opioid receptor antagonists were administered 10 min before reperfusion. The non-selective opioid δ-receptor agonist DADLE at a dose of 0.088 mg/kg had no effect the infarct size/area at risk ratio. The selective opioid δ-receptor agonist BW373 was administered at a dose of 1 mg/kg. This opioid at a dose of 1 mg/kg reduced infarct size. The selective opioid δ1-receptor agonist DPDPE at a dose of 0.1 mg/kg and 0.969 mg/kg did not affect infarct size. The selective opioid δ2-receptor agonist deltorphin II at a dose of 0.12 mg/kg reduced infarct size by one half. The opioid δ-receptor agonist p-Cl-Phe-DPDPE was administered at a dose of 0.105 mg/kg and 1.02 mg/kg. This opioid at a dose of 1.02 mg/kg reduced infarct size. The universal opioid receptor antagonists, naltrexone and naloxone methiodide acting on peripheral opioid receptor, as well as the selective opioid δ-receptor antagonist TIIP[ψ], the selective opioid δ2-receptor antagonist naltriben eliminated the infarct limiting effect of deltorphin II. The selective opioid κ receptor antagonist nor-binaltorphimine, the selective opioid µ receptor antagonist CTAP, and the selective opioid δ1-receptor antagonist BNTX did not abolish the protective effect of deltorphin II. Deltorphin II exhibited the most pronounced cardioprotective effect during reperfusion. These studies clearly indicate that the activation of opioid δ2-receptor located in cardiomyocytes increases the resistance of the heart to reperfusion injury.


Assuntos
Receptores Opioides delta , Animais , Antagonistas de Entorpecentes , Ratos , Receptores Opioides mu
14.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067674

RESUMO

The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 µM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/administração & dosagem , Fármacos Cardiovasculares/administração & dosagem , Mitocôndrias Cardíacas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Hemodinâmica/efeitos dos fármacos , Hexoquinase/metabolismo , Preparação de Coração Isolado , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos
15.
J Tissue Eng ; 12: 2041731420987529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854749

RESUMO

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.

16.
Sci Rep ; 10(1): 15133, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934266

RESUMO

The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS promoted monocyte interactions with the vessel lumen. Inhibition of the NF-κB pathway prevented acute arterial WSS-induced CCL2 production and reduced monocyte adhesion, both in vitro and in human LSV ex vivo, demonstrating that this pathway is necessary for the induction of the acute arterial WSS-induced pro-inflammatory response. We have identified NF-κB as a critical regulator of acute endothelial inflammation in saphenous vein in response to acute arterial WSS. Localised endothelial-specific inhibition of the NF-κB pathway may be beneficial to prevent vein graft inflammation and consequent failure.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Inflamação/prevenção & controle , Monócitos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Veia Safena/efeitos dos fármacos , Estresse Mecânico , Sulfonas/farmacologia , Células Cultivadas , Ponte de Artéria Coronária , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/cirurgia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Monócitos/patologia , Veia Safena/metabolismo , Veia Safena/patologia , Veia Safena/cirurgia
17.
Exp Ther Med ; 20(5): 48, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32973936

RESUMO

Neonates with coarctation of the aorta (CoA) combined with a bicuspid aortic valve (BAV) show significant structural differences compared to neonatal CoA patients with a normal tricuspid aortic valve (TAV). These effects are likely to change over time in response to growth. This study investigated proteomic differences between coarcted aortic tissue of BAV and TAV patients in children older than one month. Aortic tissue just proximal to the coarctation site was collected from 10 children (BAV; n=6, 1.9±1.7 years, TAV; n=4, 1.7±1.5 years, (mean ± SEM, P=0.92.) Tissue were snap frozen, proteins extracted, and the extracts used for proteomic and phosphoproteomic analysis using Tandem Mass Tag (TMT) analysis. A total of 1811 protein and 76 phosphoprotein accession numbers were detected, of which 40 proteins and 6 phosphoproteins were significantly differentially expressed between BAV and TAV patients. Several canonical pathways involved in inflammation demonstrated enriched protein expression, including acute phase response signalling, EIF2 signalling and macrophage production of IL12 and reactive oxygen species. Acute phase response signalling also demonstrated enriched phosphoprotein expression, as did Th17 activation. Other pathways with significantly enriched protein expression include degradation of superoxide radicals and several pathways involved in apoptosis. This work suggests that BAV CoA patients older than one month have an altered proteome consistent with changes in inflammation, apoptosis and oxidative stress compared to TAV CoA patients of the same age. There is no evidence of structural differences, suggesting the pathology associated with BAV evolves with age in paediatric CoA patients.

18.
Neurobiol Stress ; 11: 100189, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388518

RESUMO

The mechanisms underlying the protective effects of remote ischemic preconditioning (RIPC) are not presently clear. Recent studies in experimental models suggest the involvement of the autonomic nervous system (ANS) in cardioprotection. The aim of this study was to investigate the changes in ANS in healthy young volunteers divided into RIPC (n = 22) or SHAM (n = 18) groups. RIPC was induced by 1 cycle of 4 min inflation/5 min deflation followed by 2 cycles of 5 min inflation/5 min deflation of a cuff placed on the upper left limb. The study included analysis of heart rate (HR), blood pressure (BP), heart rate variability (HRV), measurements of microcirculation and porphyrin fluorescence in the limb before and after the RIPC. RIPC caused reactive hyperemia in the limb and reduced blood porphyrin level. A mental load (serial sevens test) and mild motor stress (hyperventilation) were performed on all subjects before and after RIPC or corresponding rest in the SHAM group. Reduction of HR occurred during the experiments in both RIPC and SHAM groups reflecting RIPC-independent adaptation of the subjects to the experimental procedure. However, in contrast to the SHAM group, RIPC altered several of the spectral indices of HRV during the serial sevens test and hyperventilation. This was expressed predominantly as an increase in power of the very low-frequency band of the spectrum, increased values of detrended fluctuation analysis and weakening of correlation between the HRV parameters and HR. In conclusion, RIPC induces changes in the activity of ANS that are linked to stress resistance.

19.
J Clin Med ; 8(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995723

RESUMO

Coarctation of the aorta is a form of left ventricular outflow tract obstruction in paediatric patients that can be presented with either bicuspid (BAV) or normal tricuspid (TAV) aortic valve. The congenital BAV is associated with hemodynamic changes and can therefore trigger different molecular remodelling in the coarctation area. This study investigated the proteomic and phosphoproteomic changes associated with BAV for the first time in neonatal coarctation patients. Aortic tissue was collected just proximal to the coarctation site from 23 neonates (BAV; n = 10, TAV; n = 13) that were matched for age (age range 4-22 days). Tissue from half of the patients was frozen and used for proteomic and phosphoproteomic analysis whilst the remaining tissue was formalin fixed and used for analysis of elastin content using Elastic Van-Gieson (EVG) staining. A total of 1796 protein and 75 phosphoprotein accession numbers were detected, of which 34 proteins and one phosphoprotein (SSH3) were differentially expressed in BAV patients compared to TAV patients. Ingenuity Pathway Analysis identified the formation of elastin fibres as a significantly enriched function (p = 1.12 × 10-4) due to the upregulation of EMILIN-1 and the downregulation of TNXB. Analysis of paraffin sections stained with EVG demonstrated increased elastin content in BAV patients. The proteomic/phosphoproteomic analysis also suggested changes in inositol signalling pathways and reduced expression of the antioxidant SOD3. This work demonstrates for the first time that coarcted aortic tissue in neonatal BAV patients has an altered proteome/phosphoproteome consistent with observed structural vascular changes when compared to TAV patients.

20.
Eur J Cardiothorac Surg ; 55(5): 905-912, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544237

RESUMO

OBJECTIVES: This trial was designed and patients were recruited at a time when the benefits of remote ischaemic preconditioning during open-heart surgery were still controversial. We focused on a homogeneous patient population undergoing either isolated aortic valve replacement or coronary artery bypass grafting (CABG) surgery by investigating cardiac injury, metabolic stress and inflammatory response. METHODS: A 2-centre randomized controlled trial recruited a total of 124 patients between February 2013 and April 2015. Of them, 64 patients underwent CABG and 60 patients underwent aortic valve replacement. Patients were randomized to either sham or preconditioning. Remote ischaemic preconditioning was applied following anaesthesia and before sternotomy. Myocardial injury and inflammatory response were assessed by serially measuring cardiac troponin I, and interleukin-6, 8, 10 and the tumour necrosis factor (TNF-α). Biopsies from the left and the right ventricles were harvested after ischaemic reperfusion injury for nucleotides analysis. RESULTS: Application of remote ischaemic preconditioning did not alter the degree of troponin I release, levels of inflammatory markers and cardiac energetics in both the CABG and the aortic valve replacement groups. CONCLUSIONS: Preconditioning did not confer any additional cardioprotection in terms of reducing the levels of troponin I and inflammatory markers and preserving left and right ventricle energy metabolites in patients undergoing isolated CABG or aortic valve surgery. CLINICAL TRIAL REGISTRATION NUMBER: International Standard Randomized Controlled Trial Number (ISRCTN) registry ID 33084113 (doi: 10.1186/ISRCTN33084113) and UK controlled randomized trial number (UKCRN) registry ID 13672.


Assuntos
Valva Aórtica/cirurgia , Ponte de Artéria Coronária/estatística & dados numéricos , Implante de Prótese de Valva Cardíaca/estatística & dados numéricos , Precondicionamento Isquêmico Miocárdico/estatística & dados numéricos , Idoso , Ponte de Artéria Coronária/efeitos adversos , Citocinas/sangue , Feminino , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Inflamação , Precondicionamento Isquêmico Miocárdico/efeitos adversos , Masculino , Pessoa de Meia-Idade , Troponina I/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...