Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Heliyon ; 10(6): e28313, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560674

RESUMO

The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.

2.
Food Sci Nutr ; 12(2): 661-674, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370077

RESUMO

The current study focuses on Punica granatum L. (pomegranate) peel and peel extract and their use as functional foods, food additives, or physiologically active constituents in nutraceutical formulations. The pomegranate peel extract is a good source of bioactive substances needed for the biological activity of the fruit, including phenolic acids, minerals, flavonoids (anthocyanins), and hydrolyzable tannins (gallic acid). The macromolecules found in pomegranate peel and peel extract have been recommended as substitutes for synthetic nutraceuticals, food additives, and chemo-preventive agents because of their well-known ethno-medical significance and chemical properties. Moreover, considering the promises for both their health-promoting activities and chemical properties, the dietary and nutraceutical significance of pomegranate peel and pomegranate peel extract appears to be underestimated. The present review article details their nutritional composition, phytochemical profile, food applications, nutraceutical action, and health benefits.

3.
Int J Biol Macromol ; 261(Pt 1): 129820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286385

RESUMO

Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.


Assuntos
Doenças Cardiovasculares , Gorduras Insaturadas na Dieta , Nanopartículas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Antioxidantes/química , Alimentos , Polissacarídeos/química
4.
Food Sci Nutr ; 11(8): 4485-4501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576041

RESUMO

The current investigation was carried out to evaluate the impact of gamma irradiation and guava leaf extract (GLE) on chicken meat patties. The effects of treatments on chicken meat patties were determined by physicochemical, stability (oxidative and microbial), and antioxidant status during different packaging (aerobic and vacuum) at storage intervals (0, 5, and 10 days). The changes in physicochemical parameters of chicken patties were observed on various treatments, storage intervals, and different packaging. The TBARS and POV were found to increase significantly (p < .05) on 2 kGy and with the passage of storage time. The results of microbial load in samples were found to decrease on gamma irradiation with and without GLE. The antioxidant profile in chicken patties was with respect to control. Slight changes were seen in sensory parameters on different treatments at storage intervals. It is concluded that gamma irradiation eliminated the microbes and different concentrations of GLE improve the stability and antioxidant profile of chicken patties.

5.
Front Biosci (Landmark Ed) ; 28(3): 44, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-37005759

RESUMO

BACKGROUND: Lentil (Lens culinaris M.) is a legume widely consumed worldwide. It is rich in bioactive compounds, including polyphenolic compounds that contribute to positive health benefits. METHODS: This study aimed to determine the phenolic content and antioxidant activity of black, red, green, and brown whole lentils. Towards this end, the lentils' phenolic compounds were evaluated regarding their total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), total condensed tannin (TCT), total proanthocyanin content (TPAC), total anthocyanin content (TAC). For the antioxidant activity 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), hydroxyl radical scavenging activity (•OH-RSA), ferrous ion chelating activity (FICA), reducing power assay (RPA) and phosphomolybdate (PMA) assay were accessed. To identify individual phenolic compounds, liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS2) was used. RESULTS: The results showed that green lentils exhibited the highest TPC (0.96 mg gallic acid equivalents (GAE)/g) whereas red lentils presented the highest TFC (0.06 mg quercetin equivalents (QE)/g). Black lentils were noted with the highest TCT (0.03 mg catechin equivalents (CE)/g), TPAC (0.009 mg cyanidin chloride equivalents (CCE)/g), and TAC (3.32 mg/100 g) contents. While the greatest TTC (2.05 mg tannic acid equivalents (TAE)/g) was observed in the brown lentil. Regarding the total antioxidant capacity, red lentils (4.01 mg ascorbic acid equivalents (AAE)/g) presented the greatest activity, whereas the lowest was found in the brown samples (2.31 mg AAE/g). The LC-ESI-QTOF-MS2 tentatively identified a total of 22 phenolic compounds, containing 6 phenolic acids, 13 flavonoids, 2 lignans, and 1 other polyphenol. The relationships among phenolic compounds by Venn Diagram showed a high number of overlapping compounds in brown and red lentils (6.7%), and a low number of overlapping compounds between the green, brown, and black lentils (2.6%). Flavonoids were the most abundant phenolic compound within the studied whole lentils, with the brown lentils being the richest in phenolic compounds, especially flavonoids. CONCLUSIONS: This study emphasized a comprehensive understanding of the antioxidant potential of lentils and disclosed the phenolic distribution across various lentil samples. This may increase interest in the development of functional food products, nutraceutical ingredients, and pharmaceutical applications with lentils.


Assuntos
Antioxidantes , Lens (Planta) , Antioxidantes/química , Extratos Vegetais/química , Ácido Ascórbico , Flavonoides , Fenóis , Cromatografia Líquida , Espectrometria de Massas
6.
Biomed Res Int ; 2022: 7053655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582600

RESUMO

Ficus benghalensis is one of the potential medicinal plants which is used locally for the treatment of various ailments such as diabetes, antiasthmatic, and wound healing. To provide a scientific background to these folklores, the current study was designed to evaluate the extract and isolated compound against various enzymes such as ureases, tyrosinase, and phosphodiesterase. The methanolic extract and carpachromene demonstrated a significant urease inhibition effect with maximum percent inhibition of 72.09 and 92.87%, respectively. Regarding the tyrosinase inhibition, the percent antagonist effect of carpachromene and the methanolic extract was 84.80 and 70.98%, respectively. The phosphodiesterase was also significantly antagonized by crude extract and carpachromene with a maximum percent inhibition of 82.98% and 89.54%, respectively. The docking study demonstrated that the carpachromene fits well into the active site of all three enzymes with significant interactions. Carpachromene might possess the potential to inhibit all three enzymes and can effectively treat different diseases associated with the hyperactivity of these enzymes. In conclusion, the crude extract and carpachromene exhibit significant urease, tyrosinase, and phosphodiesterase inhibitory activity which might be used against various diseases. In conclusion, the crude extract and carpachromene exhibit significant urease, tyrosinase, and phosphodiesterase inhibitory activity which might be used against diabetes and bronchoconstriction. Further, the current study provides scientific backup to the folklore (antidiabetic and antiasthmatic) of Ficus benghalensis.


Assuntos
Ficus , Extratos Vegetais , Diabetes Mellitus/tratamento farmacológico , Ficus/química , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Urease
7.
Front Vet Sci ; 9: 1071097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544551

RESUMO

Lumpy skin disease virus (LSDV) causes lumpy skin disease (LSD) in livestock, which is a double-stranded DNA virus that belongs to the genus Capripoxvirus of the family Poxviridae. LSDV is an important poxvirus that has spread out far and wide to become distributed worldwide. It poses serious health risks to the host and causes considerable negative socioeconomic impact on farmers financially and on cattle by causing ruminant-related diseases. Previous studies explained the population structure of the LSDV within the evolutionary time scale and adaptive evolution. However, it is still unknown and remains enigmatic as to how synonymous codons are used by the LSDV. Here, we used 53 LSDV strains and applied the codon usage bias (CUB) analysis to them. Both the base content and the relative synonymous codon usage (RSCU) analysis revealed that the AT-ended codons were more frequently used in the genome of LSDV. Further low codon usage bias was calculated from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection played a role in the structuring of CUB in LSDV. Additionally, the results from a comparative analysis suggested that the LSDV has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in LSDV. This study is important because it has characterized the codon usage pattern in the LSDV genomes and has provided the necessary data for a basic evolutionary study on them.

8.
Foods ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496693

RESUMO

Beans are widely consumed throughout the world, rich in non-nutrient phenolic compounds and other bioactive constituents, including alkaloids, lectins, and others. However, research about in vitro digestion impacts on the changes of bioactive compounds' release and related antioxidant potential in different Vigna beans is limited. This research aimed to assess the modifications that occur in the content and bioaccessibility of phenolic compounds in four Vigna samples (adzuki bean, black urid whole, black eye bean, and mung bean), their antioxidant properties, and short chain fatty acids (SCFAs) production through static in vitro gastrointestinal digestion and colonic fermentation. Adzuki bean exhibited relatively higher total phenolic content (TPC; 4.76 mg GAE/g) and antioxidant activities after in vitro digestion. The black eye beans' total flavonoid content (0.74 mg QE/g) and total condensed tannins (10.43 mg CE/g) displayed higher tendencies. For colonic fermentation, the greatest TPC value of entire samples was detected through a 2-h reaction. In most selected beans, phenolic compounds were comparably more bioaccessible during the oral phase. Acetic acid showed the highest level through SCFAs production, and the total SCFAs in adzuki beans was the greatest (0.021 mmol/L) after 16-h fermentation. Adzuki beans may be more beneficial to gut health and possess a stronger antioxidant potential after consumption.

9.
Environ Sci Pollut Res Int ; 29(54): 81112-81129, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201076

RESUMO

For thousands of years, plant has been widely applied in the medical area and is an important part of human diet. A high content of nutrients could be found in all kinds of plants, and the most outstanding group of nutrients that attracts scientists' attention is the high level of phenolic compounds. Due to the relationship between high phenolic compound content and high antioxidant capacity, plant extracts are expected to become a potential treatment for oxidation stress diseases including diabetes and cancer. However, according to the instability of phenolic compounds to light and oxygen, there are certain difficulties in the extraction of such compounds. But after many years of development, the extraction technology of phenolic compounds has been quite stable, and the only problem is how to obtain high-quality extracts with high efficiency. To further enhance the value of plant extracts, concentration and separation methods are often applied, and when detailed analysis is required, characterization methods including HPLC and LC/GC-MS will be applied to evaluate the number and type of phenolic compounds. A series of antioxidant assays are widely performed in numerous studies to test the antioxidant capacity of the plant extracts, which is also an important basis for evaluating value of extracts. This paper intends to provide a view of a variety of methods used in plants' phenolic compound extraction, separation, and characterization. Furthermore, this review presents the advantages and disadvantages of techniques involved in phenolic compound research and provides selected representative bibliographic examples.


Assuntos
Antioxidantes , Fenóis , Humanos , Antioxidantes/análise , Fenóis/análise , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Oxigênio/análise
10.
Food Sci Nutr ; 10(10): 3203-3218, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249968

RESUMO

Plant-based foods are natural sources including vegetables, fruits, cereals and legumes. These foods consist of various types of nutrients in which carbohydrate is the basic component. However, some plant-based diets contain carbohydrates in the form of fiber. The fiber is usually a nondigestible polysaccharide that is not digested in the human body. It is present in the form of soluble or insoluble in different part of foods like peel, bran, pulp and grain. Pectin, beta-glucan, mucilage, psyllium, resistant starch and inulin are soluble fiber, and cellulose, hemicellulose and lignin are insoluble fiber attained from plant foods. The major function enhances immunity by creating gastrointestinal barrier, mucus production, immune cell activity and IgA level. Previous evidences showed that peoples with strong immunity have fewer chances of viral disease. A recent viral disease named COVID-19 spread in the world and millions of peoples died due to this viral disease. Coronavirus mostly attacks humans that suffer with weak immune system. It is due chronic diseases like diabetes and CVD (cardiovascular disease). The current review shows that fiber-containing plant-based foods boost immunity and aid human against COVID-19. The therapeutic role of fiber in the human body is to control the risk of hypertension and diabetes because a high-fiber diet has the ability to lower cholesterol, blood pressure and blood sugar. Fibers aid in GIT (gastrointestinal tract) and prevent constipation because it absorbs water and adds bulk to stool.

11.
ACS Omega ; 7(17): 14630-14642, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557671

RESUMO

Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.

13.
Metabolites ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35323714

RESUMO

The present research presents a comprehensive characterization of polyphenols from peach, pear, and plum using liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS), followed by the determination of their antioxidant potential. Plums showed the highest total phenolic content (TPC; 0.62 mg GAE/g), while peaches showed the highest total flavonoid content (TFC; 0.29 mg QE/g), also corresponding to their high scavenging activities (i.e., DPPH, ABTS, FRAP, and TAC). In all three fruit samples, a total of 51 polyphenolic compounds were tentatively identified and were mainly characterized from hydroxybenzoic acids, hydroxycinnamic acids, hydroxyphenylpentanoic acids, flavanols, flavonols, and isoflavonoids subclasses. Twenty targeted phenolic compounds were quantified using high-performance liquid chromatography with photodiode array detection (HPLC-PDA). The plum cultivar showed the highest content of phenolic acids (chlorogenic acid, 11.86 mg/100 g), whereas peach samples showed the highest concentration of flavonoids (catechin, 7.31 mg/100 g), as compared to pear. Based on these findings, the present research contributes and complements the current characterization data of these fruits presented in the literature, as well as ensures and encourages the utilization of these fruits in different food, feed, and nutraceutical industries.

14.
ACS Omega ; 7(5): 4563-4576, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155947

RESUMO

Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 µg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.

15.
Sci Rep ; 12(1): 1242, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075149

RESUMO

The present study was conducted to ascertain the beneficial effects of bioactive peptides on the oxidative stability and functional properties of beef nuggets. In this study, milk casein protein hydrolysates were extracted and incorporated into beef nuggets which were then subjected to different assessment parameters including oxidative stability, functional capability as well as microbial and physico-chemical quality tests were performed for determining the meat quality at different storage periods. The casein protein hydrolysate powder (CPH) was added at different concentrations in nuggets CPH 2%, 4%, 6% and 8%, with reference to storage period of 0, 5, 10 and 15 days at 4 °C. The results regarding total phenolic contents (TPC) and DPPH free radical scavenging assay showed a significant increased with respect to CPH powder and significantly decreased with respect to storage interval. The TVBN, TBARS and POV of the CPH powder incorporated raw beef nuggets also differed significantly within groups with storage time. Higher POV and TBARS were noticed in the CPH 8% incorporated beef nuggets. However, the raw beef nuggets that were made by the incorporation 8% CPH powder, maintained significantly lower level of TBARS at the end of the storage period in contrast with the levels of the control (CPH 0%). The results of the pH and Hunter color test also showed a significant difference with respect to different groups. The microbiological analysis of beef nuggets showed a significant decrease in the level of both the total aerobic and coliform counts and also indicated a decreasing trend in the level of contamination by these bacteria within the groups. This depicted that the casein protein hydrolysate powder (CPH) or simply, the peptide powder has the strong ability to decrease lipid oxidation and related shelf-life retarding natural processes occurring in the meat. It can also greatly enhance the functional properties of the raw meat (beef) and meat products. Thus, it is seen that the bioactive peptides (BAP's) are a key factor in improving the oxidative stability and functional properties of beef nuggets.


Assuntos
Caseínas , Armazenamento de Alimentos , Lipídeos/química , Carne Vermelha/análise , Peroxidação de Lipídeos , Carne Vermelha/microbiologia
16.
Food Sci Nutr ; 10(1): 12-20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35035906

RESUMO

Oxidative stress caused by the imbalance between production of oxidants and antioxidants in the body leads to the development of different ailments. The bioactive compounds derived from marine sources are considered to be safe and appropriate to use. Astaxanthin possesses antioxidant activity about 100-500 times higher than other antioxidants such as α-tocopherol and ß-carotene. It has numerous health benefits and vital pharmacological properties for the treatment of diseases like diabetes, hypertension, cancer, heart disease, ischemia, neurological disorders, and potential role in liver enzyme gamma-glutamyl transpeptidase which has significance in medicine as a diagnostic marker. The primary source of astaxanthin among crustaceans is shrimps and the presence of astaxanthin protects shrimps from oxidation of polyunsaturated fatty acids and cholesterol. Conclusively, astaxanthin derived from shrimps is very effective against oxidative stress which can lead to certain ailments.

17.
Oxid Med Cell Longev ; 2022: 2041769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824615

RESUMO

The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.


Assuntos
Alcaloides , Papaver , Papaver/química , Antocianinas , Alcaloides/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Medicina Tradicional
18.
Oxid Med Cell Longev ; 2021: 6349041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925698

RESUMO

Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an annual climbing plant, native to Asia with multiple therapeutic uses in traditional medicine. This updated review is aimed at discussing the ethnopharmacological, phytochemical, pharmacological properties, and molecular mechanisms highlighted in preclinical experimental studies and toxicological safety to evaluate the therapeutic potential of this genus. The literature from PubMed, Google Scholar, Elsevier, Springer, Science Direct, and database was analyzed using the basic keyword "Benincasa hispida." Other searching strategies, including online resources, books, and journals, were used. The taxonomy of the plant has been made by consulting "The Plant List". The results showed that B. hispida has been used in traditional medicine to treat neurological diseases, kidney disease, fever, and cough accompanied by thick mucus and to fight intestinal worms. The main bioactive compounds contained in Benincasa hispida have cytotoxic, anti-inflammatory, and anticancer properties. Further safety and efficacy investigations are needed to confirm these beneficial therapeutic effects and also future human clinical studies.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Cucurbitaceae/química , Suplementos Nutricionais/análise , Medicina Tradicional/métodos , Compostos Fitoquímicos/farmacologia , Animais , Humanos
19.
ACS Omega ; 6(50): 34687-34699, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963952

RESUMO

Sweet cherries (Prunus avium L.) are popular fruits around the world with a high nutritional value and abundant phenolic compounds. Phenolic compounds of cherries contribute to positive health benefits. This study aimed at determining the phenolic content and antioxidant activities in four Australian-grown sweet cherry cultivars, including Bing, Ron's, Merchant, and Lapins, as well as the identification of individual phenolic compounds with liquid chromatography-electrospray ionization-quantum time-of-flight-mass spectrometry (LC-ESI-QTOF-MS2). Lapins exhibits the highest total phenolic content (TPC) value (1.73 ± 0.90 mg gallic acid equivalents (GAE)/g) while Ron's exhibits the highest total flavonoid content (TFC) value (0.51 ± 0.02 mg QE/g). In 2,2'-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), reducing power assay (RPA), and total antioxidant content (TAC) assays, Merchant exhibited the highest values (0.51 ± 0.07, 1.74 ± 0.04, and 2.79 ± 0.09 mg AAE/g, respectively) and almost showed the highest antioxidant activity. Ron's presented the highest value (1.21 ± 0.09 mg EDTA/g) in ferrous ion-chelating activity (FICA) assay and exhibits the strongest metal chelating ability. The correlation between phenolic contents and antioxidant assays was observed. In the LC-ESI-QTOF-MS2 analysis, a total of 43 phenolic compounds has been detected in four sweet cherry cultivars, including 11 phenolic acids, 25 flavonoids, 5 other phenolic compounds, 1 lignan, and 1 stilbene. Venn graph showed that Lapins has the greatest number of unique compounds. Our study shows the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical, and nutraceutical industries.

20.
Oxid Med Cell Longev ; 2021: 4014867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539969

RESUMO

Cyperaceae are a plant family of grass-like monocots, comprising 5600 species with a cosmopolitan distribution in temperate and tropical regions. Phytochemically, Cyperus is one of the most promising health supplementing genera of the Cyperaceae family, housing ≈950 species, with Cyperus rotundus L. being the most reported species in pharmacological studies. The traditional uses of Cyperus spp. have been reported against various diseases, viz., gastrointestinal and respiratory affections, blood disorders, menstrual irregularities, and inflammatory diseases. Cyperus spp. are known to contain a plethora of bioactive compounds such as α-cyperone, α-corymbolol, α-pinene, caryophyllene oxide, cyperotundone, germacrene D, mustakone, and zierone, which impart pharmacological properties to its extract. Therefore, Cyperus sp. extracts were preclinically studied and reported to possess antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, antidepressive, antiarthritic, antiobesity, vasodilator, spasmolytic, bronchodilator, and estrogenic biofunctionalities. Nonetheless, conclusive evidence is still sparse regarding its clinical applications on human diseases. Further studies focused on toxicity data and risk assessment are needed to elucidate its safe and effective application. Moreover, detailed structure-activity studies also need time to explore the candidature of Cyperus-derived phytochemicals as upcoming drugs in pharmaceuticals.


Assuntos
Cyperus/química , Compostos Fitoquímicos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Cyperus/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...