Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(36): 22115-22121, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074741

RESUMO

The device performance is reported for three compounds which show both thermally activated delayed fluorescence and liquid crystallinity, and use the donor 3,6-bis(3,4-didodecyloxyphenyl)carbazole. Two of the compounds, whose photophysics were reported previously, are based on a terephthalonitrile acceptor. A third and new compound is based on an isophthalonitrile acceptor and shows a more temperature-accessible mesophase and enhanced solution emission quantum yield. Two of the compounds show device external quantum efficiencies of between 2-3% and exhibit very small efficiency roll off. The responses are evaluated in terms of the specific nature of the materials.

2.
J Phys Chem Lett ; 11(15): 5849-5855, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615767

RESUMO

A dinuclear iridium(III) complex IrIr shows dual emission consisting of near infrared (NIR) phosphorescence (λmax = 714 nm, CH2Cl2, T = 300 K) and green fluorescence (λmax = 537 nm). The NIR emission stems from a triplet state (T1) localized on the ditopic bridging ligand (3LC). Because of the dinuclear molecular structure, the phosphorescence efficiency (ΦPL = 3.5%) is high compared to those of other known red/NIR-emitting iridium complexes. The weak fluorescence stems from the lowest excited singlet state (S1) of 1LC character. The occurrence of fluorescence is ascribed to relatively slow intersystem crossing (ISC) from state S1 (1LC) to the triplet manifold. The measured ISC rate corresponds to a time constant τISC of 2.1 ps, which is an order of magnitude longer than those usually found for iridium complexes. This slow ISC rate can be explained in terms of the LC character and large energy separation (0.57 eV) of the respective singlet and triplet excited states. IrIr is internalized by live HeLa cells as evidenced by confocal luminescence microscopy.

3.
J Phys Chem Lett ; 9(4): 702-709, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29350932

RESUMO

The dinuclear Ag(I) complex has been designed to show thermally activated delayed fluorescence (TADF) of high efficiency. Strongly electron-donating terminal ligands are introduced to destabilize the d orbitals of the Ag+ ions. Consequently, the orbitals distinctly contribute to the HOMO, whereas the LUMO is localized on the bridging ligand. This ensures charge transfer character of the lowest excited singlet S1 and triplet T1 states. Accordingly, a small energy gap ΔE(S1-T1) is obtained, being essential for TADF behavior. Photophysical investigations show that at ambient temperature the complex exhibits TADF reaching a quantum yield of ΦPL = 70% with the decay time of only τ = 1.9 µs, manifesting one of the fastest TADF decays observed so far. Such an outstanding TADF efficiency is based on a small value of ΔE(S1-T1) = 480 cm-1 combined with a large transition rate of k(S1 → S0) = 2.2 × 107 s-1.

4.
Inorg Chem ; 56(21): 13274-13285, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053269

RESUMO

The four new Ag(I) complexes Ag(phen)(P2-nCB) (1), Ag(idmp)(P2-nCB) (2), Ag(dmp)(P2-nCB) (3), and Ag(dbp)(P2-nCB) (4) with P2-nCB = bis(diphenylphosphine)-nido-carborane, phen = 1,10-phenanthroline, idmp = 4,7-dimethyl-1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, and dbp = 2,9-di-n-butyl-1,10-phenanthroline were designed to demonstrate how to develop Ag(I) complexes that exhibit highly efficient thermally activated delayed fluorescence (TADF). The substituents on the 1,10-phenanthroline ligand affect the photophysical properties strongly (i) electronically via influencing the radiative rate of the S1 → S0 transition and (ii) structurally by rigidifying the molecular geometry with respect to geometry changes occurring in the lowest excited S1 and T1 states. The oscillator strength of the S1 ↔ S0 transition f(S1 ↔ S0)-an important parameter for the TADF efficiency being proportional to the radiative rate-can be increased from f(S1 ↔ S0) = 0.0258 for Ag(phen)(P2-nCB) (1) to f(S1 ↔ S0) = 0.0536 for Ag(dbp)(P2-nCB) (4), as calculated for the T1 state optimized geometries. This parameter governs the radiative TADF decay time (τr) at ambient temperature, found to be τr = 5.6 µs for Ag(phen)(P2-nCB) (1) but only τr = 1.4 µs for Ag(dbp)(P2-nCB) (4)-a record TADF value. In parallel, the photoluminescence quantum yield (ΦPL) measured for powder samples at ambient temperature is boosted up from ΦPL = 36% for Ag(phen)(P2-nCB) (1) to ΦPL = 100% for Ag(dbp)(P2-nCB) (4). This is a consequence of a cooperative effect of both decreasing the nonradiative decay rate and increasing the radiative decay rate in the series from Ag(phen)(P2-nCB) (1), Ag(idmp)(P2-nCB) (2), and Ag(dmp)(P2-nCB) (3) to Ag(dbp)(P2-nCB) (4). Another parameter important for the TADF behavior is the activation energy of the S1 state from the state T1, ΔE(S1-T1). Experimentally it is determined for the complexes Ag(dmp)(P2-nCB) (3) and Ag(dbp)(P2-nCB) (4) to be of moderate size of ΔE(S1-T1) = 650 cm-1.

5.
Chemphyschem ; 18(24): 3508-3535, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29083512

RESUMO

The development of organic light emitting diodes (OLEDs) and the use of emitting molecules have strongly stimulated scientific research of emitting compounds. In particular, for OLEDs it is required to harvest all singlet and triplet excitons that are generated in the emission layer. This can be achieved using the so-called triplet harvesting mechanism. However, the materials to be applied are based on high-cost rare metals and therefore, it has been proposed already more than one decade ago by our group to use the effect of thermally activated delayed fluorescence (TADF) to harvest all generated excitons in the lowest excited singlet state S1 . In this situation, the resulting emission is an S1 →S0 fluorescence, though a delayed one. Hence, this mechanism represents the singlet harvesting mechanism. Using this effect, high-cost and strong SOC-carrying rare metals are not required. This mechanism can very effectively be realized by use of CuI or AgI complexes and even by purely organic molecules. In this investigation, we focus on photoluminescence properties and on crucial requirements for designing CuI and AgI materials that exhibit short TADF decay times at high emission quantum yields. The decay times should be as short as possible to minimize non-radiative quenching and, in particular, chemical reactions that frequently occur in the excited state. Thus, a short TADF decay time can strongly increase the material's long-term stability. Here, we study crucial parameters and analyze their impact on the TADF decay time. For example, the energy separation ΔE(S1 -T1 ) between the lowest excited singlet state S1 and the triplet state T1 should be small. Accordingly, we present detailed photophysical properties of two case-study materials designed to exhibit a large ΔE(S1 -T1 ) value of 1000 cm-1 (120 meV) and, for comparison, a small one of 370 cm-1 (46 meV). From these studies-extended by investigations of many other CuI TADF compounds-we can conclude that just small ΔE(S1 -T1 ) is not a sufficient requirement for short TADF decay times. High allowedness of the transition from the emitting S1 state to the electronic ground state S0 , expressed by the radiative rate kr (S1 →S0 ) or the oscillator strength f(S1 →S0 ), is also very important. However, mostly small ΔE(S1 -T1 ) is related to small kr (S1 →S0 ). This relation results from an experimental investigation of a large number of CuI complexes and basic quantum mechanical considerations. As a consequence, a reduction of τ(TADF) to below a few µs might be problematic. However, new materials can be designed for which this disadvantage is not prevailing. A new TADF compound, Ag(dbp)(P2 -nCB) (with dbp=2,9-di-n-butyl-1,10-phenanthroline and P2 -nCB=bis-(diphenylphosphine)-nido-carborane) seems to represent such an example. Accordingly, this material shows TADF record properties, such as short TADF decay time at high emission quantum yield. These properties are based (i) on geometry optimizations of the AgI complex for a fast radiative S1 →S0 rate and (ii) on restricting the extent of geometry reorganizations after excitation for reducing non-radiative relaxation and emission quenching. Indeed, we could design a TADF material with breakthrough properties showing τ(TADF)=1.4 µs at 100 % emission quantum yield.

6.
Inorg Chem ; 56(9): 4885-4897, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28388072

RESUMO

Two new amphiphilic platinum(II) complexes, [Pt(2-(4-fluorophenyl)-5-(4-dodecyloxyphenyl)pyridine) (acac)] (Pt-1) and [Pt(2-(4-dodecyloxyphenyl)-5-(thien-2-yl)-c-cyclopentenepyridine) (acac)] (Pt-2), where acac is acetylacetonate, were synthesized and characterized. Apart from conventional phosphorescence of single molecules (ME-monomer emission), complexes Pt-1 and Pt-2 also exhibit excimer emission (EE) when embedded into phospholipid vesicles, that is assigned to emissive Pt-Pt excimers. The EE intensity in vesicular media appeared to depend on the viscosity of the vesicles and the concentration of the embedded complex. Differences in the EE properties of complexes Pt-1 and Pt-2 are correlated with the energies of the π-character frontier orbitals defined by the design of the cyclometalating phenylpyridine ligand. Higher energies of the frontier π-orbitals (HOMO and LUMO) naturally promote stronger π-π interactions, thus obstructing the PtII-PtII interaction.

7.
J Am Chem Soc ; 136(27): 9637-42, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24936908

RESUMO

A series of three Pt(II) complexes with a doubly cyclometalating terdentate ligand L1, L1H2 = 3,6-bis(p-anizolyl)-2-carboranyl-pyridine, and diethyl sulfide (1), triphenylphosphine (2), and t-butylisonitrile (3) as ancillary ligands were synthesized. X-ray diffraction studies of 1 and 2 show a coordination of the L1 ligand in a C-N-C mode in which the bulky and rigid o-carborane fragment is cyclometalated via a C atom. Importantly, no close intermolecular Pt-Pt contacts occur with this ligand type. The new Pt(II) pincer complexes display very high luminescence quantum yields at decay times of several tens of µs even in solution under ambient conditions. On the basis of the low-temperature (T = 1.3 K) emission decay behavior, the emission is assigned to a ligand centered triplet excited state (3)LC with small (1,3)MLCT admixtures. Because the phosphorescence is effectively quenched by molecular oxygen, optical sensors operating in a wide range of oxygen pressure can be developed. Owing to the very high luminescence quantum yields, the new materials might also become attractive as emitter materials for diverse optoelectronic applications.


Assuntos
Compostos de Boro/química , Luminescência , Compostos Organoplatínicos/química , Piridinas/química , Ligantes , Medições Luminescentes , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Processos Fotoquímicos , Teoria Quântica , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...