Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730234

RESUMO

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos , Domínio Catalítico , Hirudinas , Trombina , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Trombina/antagonistas & inibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/química , Fator Xa/metabolismo , Fator Xa/química , Inibidores do Fator Xa/química , Inibidores do Fator Xa/farmacologia , Animais , Sítios de Ligação , Coagulação Sanguínea/efeitos dos fármacos
2.
Front Immunol ; 15: 1356638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550590

RESUMO

Lymphocyte telomere length (TL) is highly variable and shortens with age. Short telomeres may impede TL-dependent T-cell clonal expansion with viral infection. As SARS-CoV-2 infection can induce prolonged and severe T-cell lymphopenia, infected adults, and particularly older adults with short telomeres, may display severe T-cell lymphopenia. To examine the relationship between T-cell TL parameters and T-cell counts, we studied 40 patients hospitalized with severe COVID-19. T-cells were isolated from lymphocytes, counted using flow cytometry, and their TL parameters were measured using the Telomere Shortest Length Assay. The cohort (median age = 62 years, 27% female) was racially and ethnically diverse (33% White, 35% Black, and 33% Other). On intensive care unit study day 1, T-cell count (mean=1.03 x109/L) was inversely related to age (p=0.007) and higher in females than males (p=0.025). Mean TL was 3.88 kilobases (kb), and 45.3% of telomeres were shorter than 3 kb. Using multiple regression analysis and adjusting for age and sex, T-cell count decreased with increased proportion of T-cell telomeres shorter than 3 kb (p=0.033) and increased with mean TL (p=0.052). Our findings suggest an association between the buildup of short telomeres within T-cells and explain in part reduced peripheral blood T-cell counts in patients with severe COVID-19. Shortened T-cell telomeres may be a risk factor for COVID-19-associated T-cell lymphopenia.


Assuntos
COVID-19 , Linfopenia , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Linfócitos T , SARS-CoV-2 , Contagem de Linfócitos , Telômero
3.
Pain ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452223

RESUMO

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.

4.
Nucleic Acid Ther ; 34(1): 12-17, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285522

RESUMO

The ability to reverse the binding of aptamers to their target proteins has received considerable attention for developing controllable therapeutic agents. Recently, use of aptamers as reversible cell-sorting ligands has also sparked interest. Antibodies are currently utilized for isolating cells expressing a particular cell surface receptor. The inability to remove antibodies from isolated cells following sorting greatly limits their utility for many applications. Previously, we described how a particular aptamer-antidote oligonucleotide pair can isolate cells and clean them. Here, we demonstrate that this approach is generalizable; aptamers can simultaneously recognize more than one cell type during fluorescent activated cell sorting (FACS). Moreover, we describe a novel approach to reverse aptamer binding following cell sorting using a nuclease. This alternative strategy represents a cleaning approach that does not require the generation of antidote oligonucleotides for each aptamer and will greatly reduce the cost and expand the utility of Clean FACS.


Assuntos
Antídotos , Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Ligantes , Coloração e Rotulagem , Anticorpos , Técnica de Seleção de Aptâmeros
5.
STAR Protoc ; 4(3): 102348, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314924

RESUMO

Cell isolation from complex mixtures is a key step in many clinical and research applications, but standard isolation methods may affect the cell's biology and are difficult to reverse. Here, we present a method to isolate and restore cells to their native state using an aptamer that binds epidermal growth factor receptor (EGFR+)cells and a complementary antisense oligonucleotide to reverse binding. For complete details on the use and execution of this protocol, please refer to Gray et al.1.


Assuntos
Antídotos , Oligonucleotídeos , Oligonucleotídeos Antissenso , Separação Celular
6.
Cell Chem Biol ; 30(8): 879-892.e5, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390831

RESUMO

CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage. These variants demonstrate surprising malleability in sgRNA sequence. We also observe that particular variants partner more effectively with specific DNA-binding antisense domains, yielding combinations with enhanced editing efficiencies at various target sites. Using molecular evolution, CRISPR-based systems could be created to efficiently edit even challenging DNA sequences making the genome more tractable to engineering. This selection approach will be valuable for generating sgRNAs with a range of useful activities.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , RNA , DNA/genética , DNA/metabolismo , Edição de Genes
7.
Mol Ther Nucleic Acids ; 31: 383-397, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36817723

RESUMO

Adeno-associated viruses (AAVs) are commonly used for in vivo gene therapy. Nevertheless, the wide tropism that characterizes these vectors limits specific targeting to a particular cell type or tissue. Here, we developed new chemically modified AAV vectors (Nε-AAVs) displaying a single site substitution on the capsid surface for post-production vector engineering through biorthogonal copper-free click chemistry. We were able to identify AAV vectors that would tolerate the unnatural amino acid substitution on the capsid without disrupting their packaging efficiency. We functionalized the Nε-AAVs through conjugation with DNA (AS1411) or RNA (E3) aptamers or with a folic acid moiety (FA). E3-, AS1411-, and FA-AAVs showed on average a 3- to 9-fold increase in transduction compared with their non-conjugated counterparts in different cancer cell lines. Using specific competitors, we established ligand-specific transduction. In vivo studies confirmed the selective uptake of FA-AAV and AS1411-AAV without off-target transduction in peripheral organs. Overall, the high versatility of these novel Nε-AAVs might pave the way to tailoring gene therapy vectors toward specific types of cells both for ex vivo and in vivo applications.

8.
Mol Ther Nucleic Acids ; 31: 440-451, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36817726

RESUMO

Pathological blood clotting, or thrombosis, limits vital blood flow to organs; such deprivation can lead to catastrophic events including myocardial infarction, pulmonary embolism, and ischemic stroke. Prompt restoration of blood flow greatly improves outcomes. We explored whether aptamers could serve as molecular imaging probes to rapidly detect thrombi. An aptamer targeting thrombin, Tog25t, was found to rapidly localize to and visualize pre-existing clots in the femoral and jugular veins of mice using fluorescence imaging and, when circulating, was able to image clots as they form. Since free aptamer is quickly cleared from circulation, contrast is rapidly developed, allowing clot visualization within minutes. Moreover, administration of an antidote oligonucleotide further enhanced contrast development, causing the unbound aptamer to clear within 5min while impacting the clot-bound aptamer more slowly. These findings suggest that aptamers can serve as imaging agents for rapid detection of thrombi in acute care and perioperative settings.

9.
RNA ; 29(4): 455-462, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697262

RESUMO

In this short Perspective, we discuss the history of, and recent progress toward, the development of aptamers that can serve as rapid onset anticoagulants during cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and catheter-based diagnostic and interventional procedures, several million of which are performed each year worldwide. Aptamer anticoagulants provide potent and antidote-controllable anticoagulation and have low immunogenicity. New methods of aptamer isolation and engineering have not only improved the quality of aptamers, but also accelerated their development. Unfortunately, no aptamer identified to date can produce an anticoagulant effect as potent as that produced by unfractionated heparin (UFH), the standard anticoagulant for CPB. We have suggested several possible strategies to amplify the anticoagulant potency of existing aptamer anticoagulants.


Assuntos
Aptâmeros de Nucleotídeos , Heparina , Heparina/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Coagulação Sanguínea , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Antídotos/farmacologia
10.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36558901

RESUMO

Von Willebrand Factor (VWF) plays a critical role in thrombus formation, stabilization, and propagation. Previous studies have demonstrated that targeted inhibition of VWF induces thrombolysis when administered in vivo in animal models of ischemic stroke. The study objective was to quantify dose-dependent inhibition of VWF-platelet function and its relationship with thrombolysis using BB-031, an aptamer that binds VWF and inhibits its function. VWF:Ac, VWF:RCo, T-TAS, and ristocetin-induced impedance aggregometry were used to assess BB-031-mediated inhibition of VWF. Reductions in original thrombus surface area and new deposition during administration of treatment were measured in a microfluidic model of arterial thrombolysis. Rotational thromboelastometry was used to assess changes in hemostasis. BB-031 induced maximal inhibition at the highest dose (3384 nM) in VWF:Ac, and demonstrated dose-dependent responses in all other assays. BB-031, but not vehicle, induced recanalization in the microfluidic model. Maximal lytic efficacy in the microfluidic model was seen at 1692 nM and not 3384 nM BB-031 when assessed by surface area. Minor changes in ROTEM parameters were seen at 3384 nM BB-031. Targeted VWF inhibition by BB-031 results in clinically measurable impairment of VWF function, and specifically VWF-GPIb function as measured by VWF:Ac. BB-031 also induced thrombolysis as measured in a microfluidic model of occlusion and reperfusion. Moderate correlation between inhibition and lysis was observed. Additional studies are required to further examine off-target effects of BB-031 at high doses, however, these are expected to be above the range of clinical targeted dosing.

11.
Crit Care Explor ; 4(12): e0799, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506827

RESUMO

The COVID-19 pandemic has claimed over eight hundred thousand lives in the United States alone, with older individuals and those with comorbidities being at higher risk of severe disease and death. Although severe acute respiratory syndrome coronavirus 2-induced hyperinflammation is one of the mechanisms underlying the high mortality, the association between age and innate immune responses in COVID-19 mortality remains unclear. DESIGN: Flow cytometry of fresh blood and multiplexed inflammatory chemokine measurements of sera were performed on samples collected longitudinally from our cohort. Aggregate impact of comorbid conditions was calculated with the Charlson Comorbidity Index, and association between patient factors and outcomes was calculated via Cox proportional hazard analysis and repeated measures analysis of variance. SETTING: A cohort of severely ill COVID-19 patients requiring ICU admission was followed prospectively. PATIENTS: In total, 67 patients (46 male, age 59 ± 14 yr) were included in the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Mortality in our cohort was 41.8%. We identified older age (hazard ratio [HR] 1.09 [95% CI 1.07-1.11]; p = 0.001), higher comorbidity index (HR 1.24 [95% CI 1.14-1.35]; p = 0.039), and hyponatremia (HR 0.90 [95% CI 0.82-0.99]; p = 0.026) to each independently increase risk for death in COVID-19. We also found that neutrophilia (R = 0.2; p = 0.017), chemokine C-C motif ligand (CCL) 2 (R = 0.3; p = 0.043), and C-X-C motif chemokine ligand 9 (CXCL9) (R = 0.3; p = 0.050) were weakly but significantly correlated with mortality. Older age was associated with lower monocyte (R = -0.2; p = 0.006) and cluster of differentiation (CD) 16+ cell counts (R = -0.2; p = 0.002) and increased CCL11 concentration (R = 0.3; p = 0.050). Similarly, younger patients (< 65 yr) demonstrated a rise in CD4 (b-coefficient = 0.02; p = 0.036) and CD8 (0.01; p = 0.001) counts, as well as CCL20 (b-coefficient = 6.8; p = 0.036) during their ICU stay. This CD8 count rise was also associated with survival (b-coefficient = 0.01; p = 0.023). CONCLUSIONS: Age, comorbidities, and hyponatremia independently predict mortality in severe COVID-19. Neutrophilia and higher CCL2 and CXCL9 levels are also associated with higher mortality, while independent of age.

12.
iScience ; 25(12): 105542, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36444294

RESUMO

Nucleic acid-binding polymers can have anti-inflammatory properties and beneficial effects in animal models of infection, trauma, cancer, and autoimmunity. PAMAM G3, a polyamidoamine dendrimer, is fully cationic bearing 32 protonable surface amines. However, while PAMAM G3 treatment leads to improved outcomes for mice infected with influenza, at risk of cancer metastasis, or genetically prone to lupus, its administration can lead to serosal inflammation and elevation of biomarkers of liver and kidney damage. Variants with reduced density of cationic charge through the interspersal of hydroxyl groups were evaluated as potentially better-tolerated alternatives. Notably, the variant PAMAM G3 50:50, similar in size as PAMAM G3 but with half the charge, was not toxic in cell culture, less associated with weight loss or serosal inflammation after parenteral administration, and remained effective in reducing glomerulonephritis in lupus-prone mice. Identification of such modified scavengers should facilitate their development as safe and effective anti-inflammatory agents.

13.
Anesthesiology ; 137(1): 67-78, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412597

RESUMO

BACKGROUND: COVID-19 causes hypercoagulability, but the association between coagulopathy and hypoxemia in critically ill patients has not been thoroughly explored. This study hypothesized that severity of coagulopathy would be associated with acute respiratory distress syndrome severity, major thrombotic events, and mortality in patients requiring intensive care unit-level care. METHODS: Viscoelastic testing by rotational thromboelastometry and coagulation factor biomarker analyses were performed in this prospective observational cohort study of critically ill COVID-19 patients from April 2020 to October 2020. Statistical analyses were performed to identify significant coagulopathic biomarkers such as fibrinolysis-inhibiting plasminogen activator inhibitor 1 and their associations with clinical outcomes such as mortality, extracorporeal membrane oxygenation requirement, occurrence of major thrombotic events, and severity of hypoxemia (arterial partial pressure of oxygen/fraction of inspired oxygen categorized into mild, moderate, and severe per the Berlin criteria). RESULTS: In total, 53 of 55 (96%) of the cohort required mechanical ventilation and 9 of 55 (16%) required extracorporeal membrane oxygenation. Extracorporeal membrane oxygenation-naïve patients demonstrated lysis indices at 30 min indicative of fibrinolytic suppression on rotational thromboelastometry. Survivors demonstrated fewer procoagulate acute phase reactants, such as microparticle-bound tissue factor levels (odds ratio, 0.14 [0.02, 0.99]; P = 0.049). Those who did not experience significant bleeding events had smaller changes in ADAMTS13 levels compared to those who did (odds ratio, 0.05 [0, 0.7]; P = 0.026). Elevations in plasminogen activator inhibitor 1 (odds ratio, 1.95 [1.21, 3.14]; P = 0.006), d-dimer (odds ratio, 3.52 [0.99, 12.48]; P = 0.05), and factor VIII (no clot, 1.15 ± 0.28 vs. clot, 1.42 ± 0.31; P = 0.003) were also demonstrated in extracorporeal membrane oxygenation-naïve patients who experienced major thrombotic events. Plasminogen activator inhibitor 1 levels were significantly elevated during periods of severe compared to mild and moderate acute respiratory distress syndrome (severe, 44.2 ± 14.9 ng/ml vs. mild, 31.8 ± 14.7 ng/ml and moderate, 33.1 ± 15.9 ng/ml; P = 0.029 and 0.039, respectively). CONCLUSIONS: Increased inflammatory and procoagulant markers such as plasminogen activator inhibitor 1, microparticle-bound tissue factor, and von Willebrand factor levels are associated with severe hypoxemia and major thrombotic events, implicating fibrinolytic suppression in the microcirculatory system and subsequent micro- and macrovascular thrombosis in severe COVID-19.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Síndrome do Desconforto Respiratório , Trombofilia , Trombose , Transtornos da Coagulação Sanguínea/complicações , COVID-19/complicações , Estado Terminal , Fibrinólise , Humanos , Hipóxia/complicações , Microcirculação , Oxigênio , Inibidor 1 de Ativador de Plasminogênio , Estudos Prospectivos , Estudos Retrospectivos , Trombofilia/complicações , Tromboplastina
14.
Transl Res ; 245: 30-40, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35245691

RESUMO

Systemic lupus erythematosus (SLE) is a chronic and often progressive autoimmune disorder marked clinically by a variable constellation of symptoms including fatigue, rash, joint pains, and kidney damage. The lungs, heart, gastrointestinal system, and brain can also be impacted, and individuals with lupus are at higher risk for atherosclerosis, thrombosis, thyroid disease, and other disorders associated with chronic inflammation . Autoimmune diseases are marked by erroneous immune responses in which the target of the immune response is a "self"-antigen, or autoantigen, driven by the development of antigen-specific B or T cells that have overcome the normal systems of self-tolerance built into the development of B and T cells. SLE is specifically characterized by the production of autoantibodies against nucleic acids and their binding proteins, including anti-double stranded DNA, anti-Smith (an RNA binding protein), and many others . These antibodies bind their nuclear-derived antigens to form immune complexes that cause injury and scarring through direct deposition in tissues and activation of innate immune cells . In over 50% of SLE patients, immune complex aggregation in the kidneys drives intrarenal inflammation and injury and leads to lupus nephritis, a progressive destruction of the glomeruli that is one of the most common causes of lupus-related death . To counter this pathology increasing attention has turned to developing approaches to reduce the development and continued generation of such autoantibodies. In particular, the molecular and cellular events that lead to long term, continuous activation of such autoimmune responses have become the focus of new therapeutic strategies to limit renal and other pathologies in lupus patients. The focus of this review is to consider how the innate immune system is involved in the development and progression of lupus nephritis and how a novel approach to inhibit innate immune activation by neutralizing the activators of this response, called Damage Associated Molecular Patterns, may represent a promising approach to treat this and other autoimmune disorders.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Ácidos Nucleicos , Alarminas , Autoanticorpos , Humanos , Inflamação , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/tratamento farmacológico , Ácidos Nucleicos/uso terapêutico
15.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114109

RESUMO

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator V/antagonistas & inibidores , Fator Va/antagonistas & inibidores , Sequência de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sítios de Ligação , COVID-19/sangue , Membrana Celular/química , Membrana Celular/metabolismo , Fator V/química , Fator V/genética , Fator V/metabolismo , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/metabolismo , Humanos , Soros Imunes/química , Soros Imunes/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Protaminas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Técnica de Seleção de Aptâmeros , Especificidade por Substrato , Tratamento Farmacológico da COVID-19
16.
Nucleic Acid Ther ; 32(3): 139-150, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35021888

RESUMO

Known limitations of unfractionated heparin (UFH) have encouraged the evaluation of anticoagulant aptamers as alternatives to UFH in highly procoagulant settings such as cardiopulmonary bypass (CPB). Despite progress, these efforts have not been totally successful. We take a different approach and explore whether properties of an anticoagulant aptamer can complement UFH, rather than replace it, to address shortcomings with UFH use. Combining RNA aptamer 11F7t, which targets factor X/Xa, with UFH (or low molecular weight heparin) yields a significantly enhanced anticoagulant cocktail effective in normal and COVID-19 patient blood. This aptamer-UFH combination (1) supports continuous circulation of human blood through an ex vivo membrane oxygenation circuit, as is required for patients undergoing CPB and COVID-19 patients requiring extracorporeal membrane oxygenation, (2) allows for a reduced level of UFH to be employed, (3) more effectively limits thrombin generation compared to UFH alone, and (4) is rapidly reversed by the administration of protamine sulfate, the standard treatment for reversing UFH clinically following CPB. Thus, the combination of factor X/Xa aptamer and UFH has significantly improved anticoagulant properties compared to UFH alone and underscores the potential of RNA aptamers to improve medical management of acute care patients requiring potent yet rapidly reversible anticoagulation.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Ponte Cardiopulmonar/efeitos adversos , Fator X , Heparina , Humanos , Trombina
17.
Adv Mater ; 34(10): e2107852, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994037

RESUMO

Ribonucleic acid (RNA) therapeutics are an emerging class of drugs. RNA aptamers are of significant therapeutic and clinical interest because their activity can be easily reversed in vivo-a useful feature that is difficult to achieve using other therapeutic modalities. Despite their therapeutic promise, RNA aptamers are limited by their poor blood circulation. The attachment of polyethylene glycol (PEG) to RNA aptamers addresses this limitation. However, an RNA aptamer-PEG conjugate that is a reversible anticoagulant fails in a clinical trial due to the reactivity of the conjugate with pre-existing PEG antibodies and has cast a pall over PEGylation of aptamers and other biologics, despite its long history of utility in drug delivery. Here, PEG antibody-reactivity of this RNA aptamer is eliminated by conjugating it to a next-generation PEG-like brush polymer-poly[(oligoethylene glycol) methyl ether methacrylate)] (POEGMA). The conjugate retained the drug's therapeutic action and the ability to be easily reversed. Importantly, this conjugate does not bind pre-existing PEG antibodies that are prevalent in humans and does not induce a humoral immune response against the polymer itself in mice. These findings suggest a path to rescuing the PEGylation of RNA therapeutics and vaccines from the deleterious side-effects of PEG.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Anticoagulantes/farmacologia , Imunidade , Camundongos , Polietilenoglicóis , Polímeros , RNA
18.
Mol Ther Nucleic Acids ; 27: 524-534, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036063

RESUMO

Extracorporeal membrane oxygenation (ECMO) requires anticoagulation to prevent clotting when the patient's blood contacts the circuit. Unfractionated heparin (UFH) usually prevents clotting but can cause life-threatening bleeding. An anticoagulant that selectively inhibits the contact activation (intrinsic) pathway while sparing the tissue factor (extrinsic) pathway of coagulation might prevent clotting triggered by the circuit while permitting physiologic coagulation at surgical sites. DTRI-178 is an RNA anticoagulant aptamer conjugated to polyethylene glycol that increases its half-life in circulation. This aptamer is based on a previously described molecule (9.3t) that inhibits intrinsic tenase activity by binding to factor IXa on an exosite. Using a piglet model of pediatric venoarterial (VA) ECMO, we compared thromboprevention and blood loss using a single dose of DTRI-178 versus UFH. In each of five experiments, we subjected two litter-matched piglets, one anticoagulated with DTRI-178 and the other with UFH, to simultaneous 12-h periods of VA ECMO. Both anticoagulants achieved satisfactory and comparable thromboprotection. However, UFH piglets had increased surgical site bleeding and required significantly greater blood transfusion volumes than piglets anticoagulated with DTRI-178. Our results indicate that DTRI-178, an aptamer against factor IXa, may be feasible, safer, and result in fewer transfusions and clinical bleeding events in ECMO.

19.
Mol Ther ; 30(2): 845-854, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34628051

RESUMO

Nucleic acid (NA)-containing damage- and pathogen-associated molecular patterns (DAMPs and PAMPs, respectively) are implicated in numerous pathological conditions from infectious diseases to autoimmune disorders. Nucleic acid-binding polymers, including polyamidoamine (PAMAM) dendrimers, have demonstrated anti-inflammatory properties when administered to neutralize DAMPs/PAMPs. The PAMAM G3 variant has been shown to have beneficial effects in a cutaneous lupus erythematosus (CLE) murine model and improve survival of mice challenged with influenza. Unfortunately, the narrow therapeutic window of cationic PAMAM dendrimers makes their clinical development challenging. An alternative nucleic acid-binding polymer that has been evaluated in humans is a linear ß-cyclodextrin-containing polymer (CDP). CDP's characteristics prompted us to evaluate its anti-inflammatory potential in CLE autoimmune and influenza infectious disease mouse models. We report that CDP effectively inhibits NA-containing DAMP-mediated activation of Toll-like receptors (TLRs) in cell culture, improves healing in lupus mice, and does not immunocompromise treated animals upon influenza infection but improves survival even when administered 3 days after infection. Finally, as anticipated, we observe limited toxicity in animals treated with CDP compared with PAMAM G3. Thus, CDP is a new anti-inflammatory agent that may be readily translated to the clinic to combat diseases associated with pathological NA-containing DAMPs/PAMPs.


Assuntos
Influenza Humana , Lúpus Eritematoso Cutâneo , Ácidos Nucleicos , beta-Ciclodextrinas , Animais , Humanos , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Camundongos , Ácidos Nucleicos/química , Polímeros , beta-Ciclodextrinas/uso terapêutico
20.
Sci Adv ; 7(49): eabl7682, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860546

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are concerning in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a rapid test, termed CoVariant-SCAN, that detects neutralizing antibodies (nAbs) capable of blocking interactions between the angiotensin-converting enzyme 2 receptor and the spike protein of wild-type (WT) SARS-CoV-2 and three other variants: B.1.1.7, B.1.351, and P.1. Using CoVariant-SCAN, we assessed neutralization/blocking of monoclonal antibodies and plasma from COVID-19­positive and vaccinated individuals. For several monoclonal antibodies and most plasma samples, neutralization against B.1.351 and P.1 variants is diminished relative to WT, while B.1.1.7 is largely cross-neutralized. We also showed that we can rapidly adapt the platform to detect nAbs against an additional variant­B.1.617.2 (Delta)­without reengineering or reoptimizing the assay. Results using CoVariant-SCAN are consistent with live virus neutralization assays and demonstrate that this easy-to-deploy test could be used to rapidly assess nAb response against multiple SARS-CoV-2 variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...