Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APMIS ; 131(4): 170-179, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656746

RESUMO

Hardware implanted during primary total joint arthroplasty carries a serious risk for periprosthetic joint infection (PJI). The formation of bacterial biofilms, which are highly tolerant of antibiotics and host immunity, is recognized as being a major barrier to treatment. It is not known whether some components and their surface features are more prone to biofilm than others. This study attempted to map biofilm on different components and features of orthopedic hardware recovered during revision. Implant surface culture (ISC) was used on 53 components from 14 hip and knee revisions. ISC achieves a thin agar coating over components, followed by incubation and observation for colony outgrowth over 9 days. Recovered organisms were identified by selective culture and 16s rRNA sequencing. Outcomes were compared with clinical culturing and PJI diagnosis based on 2013 Musculoskeletal Infection Society criteria. ISC paralleled clinical culturing with a sensitivity of 100% and a specificity of 57.1%. When compared to Musculoskeletal Infection Society criteria, sensitivity remained at 100% while specificity was 80%. Biofilm accumulation was patchy and heterogeneous throughout different prostheses, though notably the non-articulating surfaces between the tibial tray and polyethylene insert showed consistent growth. On individual components, ridges and edges consistently harbored biofilm, while growth elsewhere was case dependent. ISC successfully identified microbial growth with high sensitivity while also revealing that biofilm growth was commonly localized to particular locations. Understanding where biofilm formation occurs most often on implanted hardware will help guide debridement, retention choices, and implant design.


Assuntos
Infecções Relacionadas à Prótese , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , RNA Ribossômico 16S/genética , Biofilmes , Bactérias/genética , Antibacterianos/uso terapêutico
2.
Ann Jt ; 62021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34859164

RESUMO

Formation of microbial biofilms has long been implicated in the occurrence of periprosthetic joint infections (PJIs). Despite the widespread acknowledgment of the severity of these infections, much is still unknown regarding the underlying mechanisms of biofilm establishment and proliferation in the joint space. The presence of these resilient, complex communities poses many clinical challenges with respect to prevention, diagnosis, and treatment practices. Mature biofilms are known to be highly recalcitrant to antibiotic therapeutics as well as host immune system mediated clearance. A comprehensive understanding of biofilms in the unique joint environment at the molecular level will provide clinicians valuable insight into how best to combat them. As each stage in the process of biofilm establishment has the potential for clinical intervention, this review will provide a sequential analysis of the existing literature, following each step in the formation cycle. New insights into bacterial survival mechanisms from antimicrobial challenge and host immune defenses will be discussed. These new observations in the field may shed light on the early protection conferred upon entry into the joint space ultimately leading to the establishment of a mature biofilm. Additionally, standards of clinical diagnosis as well as current measures of prevention and treatment will be briefly discussed.

3.
J Bone Jt Infect ; 6(5): 119-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084700

RESUMO

Introduction: Bacterial biofilms are an important virulence factor in chronic periprosthetic joint infection (PJI) and other orthopedic infection since they are highly tolerant to antibiotics and host immunity. Antibiotics are mixed into carriers such as bone cement and calcium sulfate bone void fillers to achieve sustained high concentrations of antibiotics required to more effectively manage biofilm infections through local release. The effect of antibiotic diffusion from antibiotic-loaded calcium sulfate beads (ALCS-B) in combination with PMMA bone cement spacers on the spread and killing of Pseudomonas aeruginosa Xen41 (PA-Xen41) biofilm was investigated using a "large agar plate" model scaled for clinical relevance. Methods: Bioluminescent PA-Xen41 biofilms grown on discs of various orthopedic materials were placed within a large agar plate containing a PMMA full-size mock "spacer" unloaded or loaded with vancomycin and tobramycin, with or without ALCS-B. The amount of biofilm spread and log reduction on discs at varying distances from the spacer was assessed by bioluminescent imaging and viable cell counts. Results: For the unloaded spacer control, PA-Xen41 spread from the biofilm to cover the entire plate. The loaded spacer generated a 3 cm zone of inhibition and significantly reduced biofilm bacteria on the discs immediately adjacent to the spacer but low or zero reductions on those further away. The combination of ALCS-B and a loaded PMMA spacer greatly reduced bacterial spread and resulted in significantly greater biofilm reductions on discs at all distances from the spacer. Discussion: The addition of ALCS-B to an antibiotic-loaded spacer mimic increased the area of antibiotic coverage and efficacy against biofilm, suggesting that a combination of these depots may provide greater physical antibiotic coverage and more effective dead space management, particularly in zones where the spread of antibiotic is limited by diffusion (zones with little or no fluid motion).

4.
Antibiotics (Basel) ; 10(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800299

RESUMO

Antibiotic-tolerant bacterial biofilms are notorious in causing PJI. Antibiotic loaded calcium sulfate bead (CSB) bone void fillers and PMMA cement and powdered vancomycin (VP) have been used to achieve high local antibiotic concentrations; however, the effect of drainage on concentration is poorly understood. We designed an in vitro flow reactor which provides post-surgical drainage rates after knee revision surgery to determine antibiotic concentration profiles. Tobramycin and vancomycin concentrations were determined using LCMS, zones of inhibition confirmed potency and the area under the concentration-time curve (AUC) at various time points was used to compare applications. Concentrations of antibiotcs from the PMMA and CSB initially increased then decreased before increasing after 2 to 3 h, correlating with decreased drainage, demonstrating that concentration was controlled by both release and flow rates. VP achieved the greatest AUC after 2 h, but rapidly dropped below inhibitory levels. CSB combined with PMMA achieved the greatest AUC after 2 h. The combination of PMMA and CSB may present an effective combination for killing biofilm bacteria; however, cytotoxicity and appropriate antibiotic stewardship should be considered. The model may be useful in comparing antibiotic concentration profiles when varying fluid exchange is important. However, further studies are required to assess its utility for predicting clinical efficacy.

5.
APMIS ; 127(3): 123-130, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30687941

RESUMO

While the detrimental effects of periprosthetic joint infections (PJIs) are well known, the process of biofilm formation on orthopaedic hardware is unclear. Previous work has shown that encasement of explant hardware in agar can aid in identifying biofilms. This study tested the utility of agar 'candle dip' method in detecting and mapping the location of biofilm on infected orthopedic components. Explant components from 15 patients were rinsed, briefly submerged in agar to create a surface coating, and incubated. Larger components were coated by pipetting agar over them. After incubation, colony outgrowth on the component surface was documented (candle dip status). Data were compared with clinical laboratory results (clinical culture status) and the PJI diagnosis using Musculoskeletal Infection Society criteria (MSIS status). All six patients classified as MSIS and clinical culture positive were also positive with the candle dip technique. Of the nine candle dip negative cases, four were positive and five were negative for both MSIS and clinical culture status. Candle dip may be negative in few cases due to the residual antibiotic eluting from the spacers, limiting the growth of bacterial biofilms on the components. The candle dip method shows promise for biofilm mapping but requires additional testing to evaluate the clinical diagnostic potential.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos , Ortopedia/métodos , Próteses e Implantes/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Adulto , Ágar , Idoso , Idoso de 80 Anos ou mais , Remoção de Dispositivo , Feminino , Humanos , Masculino , Infecções Relacionadas à Prótese/diagnóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...