Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106029

RESUMO

Spinal cord injury (SCI) evokes profound bladder dysfunction. Current treatments are limited by a lack of molecular data to inform novel therapeutic avenues. Previously, we showed systemic inosine treatment improved bladder function following SCI in rats. Here, we applied multi-omics analysis to explore molecular alterations in the bladder and their sensitivity to inosine following SCI. Canonical pathways regulated by SCI included those associated with protein synthesis, neuroplasticity, wound healing, and neurotransmitter degradation. Upstream regulator analysis identified MYC as a key regulator, whereas causal network analysis predicted multiple regulators of DNA damage response signaling following injury, including PARP-1. Staining for both DNA damage (γH2AX) and PARP activity (poly-ADP-ribose) markers in the bladder was increased following SCI, and attenuated in inosine-treated tissues. Proteomics analysis suggested that SCI induced changes in protein synthesis-, neuroplasticity-, and oxidative stress-associated pathways, a subset of which were shown in transcriptomics data to be inosine-sensitive. These findings provide novel insights into the molecular landscape of the bladder following SCI, and highlight a potential role for PARP inhibition to treat neurogenic bladder dysfunction.

2.
Front Physiol ; 14: 1304537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148903

RESUMO

Introduction: Myosin proteins interact with filamentous actin and translate the chemical energy generated by ATP hydrolysis into a wide variety of mechanical functions in all cell types. The classic function of conventional myosins is mediation of muscle contraction, but myosins also participate in processes as diverse as exocytosis/endocytosis, membrane remodeling, and cytokinesis. Myosin 5a (Myo5a) is an unconventional motor protein well-suited to the processive transport of diverse molecular cargo within cells and interactions with multiprotein membrane complexes that facilitate exocytosis. Myo5a includes a region consisting of six small alternative exons which can undergo differential splicing. Neurons and skin melanocytes express characteristic splice variants of Myo5a, which are specialized for transport processes unique to those cell types. But less is known about the expression of Myo5a splice variants in other tissues, their cargos and interactive partners, and their regulation. Methods: In visceral organs, neurotransmission-induced contraction or relaxation of smooth muscle is mediated by Myo5a. Axons within urogenital organs and distal colon of rodents arise from cell bodies located in the major pelvic ganglion (MPG). However, in contrast to urogenital organs, the distal colon also contains soma of the enteric nervous system. Therefore, the rodent pelvic organs provide an opportunity to compare the expression of Myo5a splice variants, not only in different tissues innervated by the pelvic nerves, but also in different subcellular compartments of those nerves. This study examines the expression and distribution of Myo5a splice variants in the MPG, compared to the bladder, corpus cavernosum of the penis (CCP) and distal colon using immunohistochemistry and mRNA analyses. Results/discussion: We report detection of characteristic Myo5a variants in these tissues, with bladder and CCP displaying a similar variant pattern but one which differed from that of distal colon. In all three organs, Myo5a variants were distinct compared to the MPG, implying segregation of one variant within nerve soma and its exclusion from axons. The expression of distinct Myo5a variant arrays is likely to be adaptive, and to underlie specific functions fulfilled by Myo5a in those particular locations.

3.
Am J Pathol ; 192(11): 1592-1603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985479

RESUMO

Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.


Assuntos
Colo , Motilidade Gastrointestinal , Contração Muscular , Músculo Liso , Neuropilina-2 , Animais , Humanos , Camundongos , Carbacol/farmacologia , Colo/metabolismo , Colo/fisiologia , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/genética
4.
Front Physiol ; 13: 890102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845995

RESUMO

Dysregulation of neurotransmission is a feature of several prevalent lower urinary tract conditions, but the mechanisms regulating neurotransmitter release in the bladder are not completely understood. The unconventional motor protein, Myosin 5a, transports neurotransmitter-containing synaptic vesicles along actin fibers towards the varicosity membrane, tethering them at the active zone prior to reception of a nerve impulse. Our previous studies indicated that Myosin 5a is expressed and functionally relevant in the peripheral nerves of visceral organs such as the stomach and the corpora cavernosa. However, its potential role in bladder neurotransmission has not previously been investigated. The expression of Myosin 5a was examined by quantitative PCR and restriction analyses in bladders from DBA (dilute-brown-nonagouti) mice which express a Myosin 5a splicing defect and in control mice expressing the wild-type Myosin 5a allele. Functional differences in contractile responses to intramural nerve stimulation were examined by ex vivo isometric tension analysis. Data demonstrated Myosin 5a localized in cholinergic nerve fibers in the bladder and identified several Myosin 5a splice variants in the detrusor. Full-length Myosin 5a transcripts were less abundant and the expression of splice variants was altered in DBA bladders compared to control bladders. Moreover, attenuation of neurally-mediated contractile responses in DBA bladders compared to control bladders indicates that Myosin 5a facilitates excitatory neurotransmission in the bladder. Therefore, the array of Myosin 5a splice variants expressed, and the abundance of each, may be critical parameters for efficient synaptic vesicle transport and neurotransmission in the urinary bladder.

5.
Front Bioeng Biotechnol ; 9: 791119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950646

RESUMO

The use of autologous tissue grafts for tunica albuginea repair in Peyronie's disease and congenital chordee is often restricted by limited tissue availability and donor site morbidity, therefore new biomaterial options are needed. In this study, bi-layer silk fibroin (BLSF) scaffolds were investigated to support functional tissue regeneration of tunica albuginea in a rabbit corporoplasty model. Eighteen adult male, New Zealand white rabbits were randomized to nonsurgical controls (NSC, N = 3), or subjected to corporoplasty with BLSF grafts (N = 5); decellularized small intestinal submucosa (SIS) matrices (N = 5); or autologous tunica vaginalis (TV) flaps (N = 5). End-point evaluations were cavernosography, cavernosometry, histological, immunohistochemical, and histomorphometric assessments. Maximum intracorporal pressures (ICP) following papaverine-induced erection were similar between all groups. Eighty percent of rabbits repaired with BLSF scaffolds or TV flaps achieved full rigid erections, compared to 40% of SIS reconstructed animals. Five-minute peak erections were maintained in 60% of BLSF rabbits, compared to 20% of SIS and TV flap reconstructed rabbits. Graft perforation occurred in 60% of TV group at maximum ICP compared to 20% of BLSF cohort. Neotissues supported by SIS and BLSF scaffolds were composed of collagen type I and elastin fibers similar to NSC. SIS and TV flaps showed significantly elevated levels of corporal fibrosis relative to NSC with a corresponding decrease in corporal smooth muscle cells expressing contractile proteins. BLSF biomaterials represent emerging platforms for corporoplasty and produce superior functional and histological outcomes in comparison to TV flaps and SIS matrices for tunica albuginea repair.

6.
PLoS Pathog ; 17(10): e1009994, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662366

RESUMO

Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.


Assuntos
Toxinas Botulínicas/metabolismo , Sinaptotagmina II/metabolismo , Sinaptotagmina I/metabolismo , Animais , Técnicas de Introdução de Genes , Camundongos , Modelos Animais
7.
Front Bioeng Biotechnol ; 9: 723559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604185

RESUMO

Ureteral reconstruction with autologous tissue grafts is often limited by tissue availability and donor site morbidity. This study investigates the performance of acellular, bi-layer silk fibroin (BLSF) scaffolds in a porcine model of ureteroplasty. Tubular ureteroplasty with BLSF grafts in combination with transient stenting for 8 weeks was performed in adult female, Yucatan, mini-swine (N = 5). Animals were maintained for 12 weeks post-op with imaging of neoconduits using ultrasonography and retrograde ureteropyelography carried out at 2 and 4 weeks intervals. End-point analyses of ureteral neotissues and unoperated controls included histological, immunohistochemical (IHC), histomorphometric evaluations as well as ex vivo functional assessments of contraction/relaxation. All animals survived until scheduled euthanasia and displayed mild hydronephrosis (Grades 1-2) in reconstructed collecting systems during the 8 weeks stenting period with one animal presenting with a persistent subcutaneous fistula at 2 weeks post-op. By 12 weeks of scaffold implantation, unstented neoconduits led to severe hydronephrosis (Grade 4) and stricture formation in the interior of graft sites in 80% of swine. Bulk scaffold extrusion into the distal ureter was also apparent in 60% of swine contributing to ureteral obstruction. However, histological and IHC analyses revealed the formation of innervated, vascularized neotissues with a-smooth muscle actin+ and SM22α+ smooth muscle bundles as well as uroplakin 3A+ and pan-cytokeratin + urothelium. Ex vivo contractility and relaxation responses of neotissues were similar to unoperated control segments. BLSF biomaterials represent emerging platforms for tubular ureteroplasty, however further optimization is needed to improve in vivo degradation kinetics and mitigate stricture formation.

9.
Neurogastroenterol Motil ; 33(10): e14162, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33939222

RESUMO

BACKGROUND: The motor protein, Myosin 5a (Myo5a) is known to play a role in inhibitory neurotransmission in gastric fundus. However, there is no information regarding the relative expression of total Myo5a, or of its alternative exon splice variants, across the stomach. This study investigated the differential distribution of Myo5a variants expressed within distinct anatomical regions of murine stomach. METHODS: The distribution of Myo5a protein and mRNA in the stomach was assessed by immunofluorescence microscopy and fluorescent in situ hybridization. Quantitative PCR, restriction enzyme analysis, and electrophoresis were used to identify Myo5a splice variants and quantify their expression levels in the fundus, body, antrum, and pylorus. KEY RESULTS: Myo5a protein colocalized with ßIII-Tubulin in the myenteric plexus, and with synaptophysin in nerve fibers. Total Myo5a mRNA expression was lower in pylorus than in antrum, body, or fundus (p < 0.001), which expressed equivalent amounts of Myo5a. However, Myo5a splice variants were differentially expressed across the stomach. While the ABCE splice variant predominated in the antrum and body regions, the ACEF/ACDEF variants were enriched in fundus and pylorus. CONCLUSIONS AND INFERENCES: Myo5a splice variants varied in their relative expression across anatomically distinguishable stomach regions and might mediate distinct physiological functions in gastric neurotransmission.


Assuntos
Plexo Mientérico , Estômago , Animais , Fundo Gástrico/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Plexo Mientérico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estômago/inervação
10.
Tissue Eng Part A ; 27(1-2): 103-116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460641

RESUMO

Surgical reconstruction of tubular esophageal defects with autologous gastrointestinal segments is the gold standard treatment to replace damaged or diseased esophageal tissues. Unfortunately, this approach is associated with adverse complications, including dysphagia, donor-site morbidity, and in some cases patient death. Bilayer silk fibroin (BLSF) scaffolds were investigated as alternative, acellular grafts for tubular esophagoplasty in a porcine defect model for 3 months of implantation. Adult Yucatan mini-swine (n = 5) were subjected to esophageal reconstruction with tubular BLSF grafts (2 cm in length) in combination with transient esophageal stenting for 2 months followed by a 1-month period, where the graft site was unstented. All animals receiving BLSF grafts survived and were capable of solid food consumption, however strictures were noted at graft regions in 60% of the experimental cohort between 2 and 3 months postop and required balloon dilation. In addition, fluoroscopic analysis showed peristaltic function in only 1/5 neotissues. Following swine harvest at 3 months, ex vivo tissue bath evaluations revealed that neoconduits exhibited contractile responses to carbachol, electric field stimulation, and KCl, whereas sodium nitroprusside and isoproterenol induced relaxation effects. Histological (Masson's Trichrome) and immunohistochemical analyses of regenerated tissue conduits showed a stratified, squamous epithelium expressing pan-cytokeratins buttressed by a vascularized lamina propria containing a smooth muscle-rich muscularis mucosa surrounded by a muscularis externa. Neuronal density, characterized by the presence of synaptophysin-positive boutons, was significantly lower in neotissues in comparison to nonsurgical controls. BLSF scaffolds represent a promising platform for the repair of tubular esophageal defects, however improvements in scaffold design are needed to reduce the rate of complications and improve the extent of constructive tissue remodeling. Impact statement The search for a superior "off-the-shelf" scaffold capable of repairing tubularesophageal defects as well as overcoming limitations associated with conventional autologous gastrointestinal segments remains elusive. The purpose of this study was to investigate the performance of an acellular, bilayer silk fibroin graft (BLSF) for tubular esophagoplasty in a porcine model. Our results demonstrated that BLSF scaffolds supported the formation of tubular neotissues with innervated, vascularized epithelial and muscular components capable of contractile and relaxation responses. BLSF scaffolds represent a promising platform for esophageal tissue engineering.


Assuntos
Esofagoplastia , Fibroínas , Animais , Fibroínas/farmacologia , Regeneração , Seda , Suínos , Engenharia Tecidual , Alicerces Teciduais
11.
Neurourol Urodyn ; 39(6): 1868-1884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511810

RESUMO

AIMS: Rodent cystometry has provided valuable insights into the impact of the disease, injury, and aging on the cellular and molecular pathways, neurologic processes, and biomechanics of lower urinary tract function. The purpose of this white paper is to highlight the benefits and shortcomings of different experimental methods and strategies and to provide guidance on the proper interpretation of results. METHODS: Literature search, selection of articles, and conclusions based on discussions among a panel of workers in the field. RESULTS: A range of cystometric tests and techniques used to explore biological phenomena relevant to the lower urinary tract are described, the advantages and disadvantages of various experimental conditions are discussed, and guidance on the practical aspects of experimental execution and proper interpretation of results are provided. CONCLUSIONS: Cystometric evaluation of rodents comprises an extensive collection of functional tests that can be performed under a variety of experimental conditions. Decisions regarding which approaches to choose should be determined by the specific questions to be addressed and implementation of the test should follow standardized procedures.


Assuntos
Roedores/fisiologia , Bexiga Urinária/fisiologia , Fenômenos Fisiológicos do Sistema Urinário , Urodinâmica/fisiologia , Animais , Feminino , Masculino
12.
J Diabetes Complications ; 33(11): 107414, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31439470

RESUMO

Although slow gastric emptying (gastroparesis) is a well-known complication of chronic hyperglycemia in diabetes mellitus (DM), it recently has become clear that rapid gastric emptying also is a frequent and important diabetic complication. In contrast, acute hyperglycemia causes slow gastric emptying, and acute hypoglycemia causes rapid gastric emptying. Rapid gastric emptying is frequent in T2DM; however, it may also occur in T1DM, particularly in the early stages of the disease, but may persist even into late stages. Recent studies suggest that usually, the stomach restricts the emptying of nutrients to 1-4 kcals/min. This restriction is due to the action of the gastric 'braking' hormones such as GLP-1, leptin, and amylin acting via the gastric inhibitory vagal motor circuit (GIVMC). Disruption of this braking system leads to rapid gastric emptying. Acute hyperglycemia also slows gastric emptying by stimulating the GIVMC, while acute hypoglycemia causes rapid gastric emptying by stimulating the gastric excitatory vagal motor circuit (GEVMC). In contrast, chronic hyperglycemia causes rapid gastric emptying by inducing oxidative stress in the stomach wall that disrupts inhibitory neuromuscular transmission and increases the contractility of the smooth muscle, while chronic hyperglycemia may also cause slow gastric emptying via severe inflammatory stress caused by proinflammatory macrophages and reduce contractility of the smooth muscle. There is a bidirectional relationship between blood glucose and gastric emptying. Thus, rapid gastric emptying may lead to a sizeable postprandial spike, and slow gastric emptying may blunt it. Postprandial hyperglycemia is involved in the development, progression, and complications of DM. Correction of fast gastric emptying involves agents that activate GIVMC and the use of gastric 'braking' hormones or their analogs. Recognition and treatment of rapid gastric emptying may contribute to better management of postprandial hyperglycemia and prevention of some diabetic complications.


Assuntos
Complicações do Diabetes/etiologia , Diabetes Mellitus/fisiopatologia , Esvaziamento Gástrico/fisiologia , Gastropatias/etiologia , Glicemia/fisiologia , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Gastroparesia/epidemiologia , Gastroparesia/etiologia , Humanos , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Período Pós-Prandial , Prognóstico , Gastropatias/diagnóstico , Gastropatias/epidemiologia , Gastropatias/fisiopatologia
13.
Tissue Eng Part A ; 25(11-12): 855-866, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30191762

RESUMO

IMPACT STATEMENT: The search for an ideal "off-the-shelf" biomaterial for augmentation cystoplasty remains elusive and current scaffold configurations are hampered by mechanical and biocompatibility restrictions. In addition, preclinical evaluations of potential scaffold designs for bladder repair are limited by the lack of tractable large animal models of obstructive bladder disease that can mimic clinical pathology. The results of this study describe a novel, minimally invasive, porcine model of partial bladder outlet obstruction that simulates clinically relevant phenotypes. Utilizing this model, we demonstrate that acellular, bi-layer silk fibroin grafts can support the formation of vascularized, innervated bladder tissues with functional properties.


Assuntos
Fibroínas/química , Regeneração , Alicerces Teciduais/química , Doenças da Bexiga Urinária , Animais , Modelos Animais de Doenças , Feminino , Suínos , Doenças da Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/psicologia , Doenças da Bexiga Urinária/terapia , Urodinâmica
14.
Cell Physiol Biochem ; 49(6): 2293-2303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261493

RESUMO

Spinal cord injury (SCI) caused by trauma or disease leads to motor and sensory abnormalities that depend on the level, severity and duration of the lesion. The most obvious consequence of SCI is paralysis affecting lower and upper limbs. SCI also leads to loss of bladder and bowel control, both of which have a deleterious, life-long impact on the social, psychological, functional, medical and economic well being of affected individuals. Currently, there is neither a cure for SCI nor is there adequate management of its consequences. Although medications provide symptomatic relief for the complications of SCI including muscle spasms, lower urinary tract dysfunction and hyperreflexic bowel, strategies for repair of spinal injuries and recovery of normal limb and organ function are still to be realized. In this review, we discuss experimental evidence supporting the use of the naturally occurring purine nucleoside inosine to improve the devastating sequelae of SCI. Evidence suggests inosine is a safe, novel agent with multifunctional properties that is effective in treating complications of SCI and other neuropathies.


Assuntos
Inosina/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inosina/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Traumatismos da Medula Espinal/patologia
15.
Neurourol Urodyn ; 37(5): 1583-1593, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427331

RESUMO

AIMS: Mounting evidence indicates that a variety of factors released from the urothelium or suburothelium can modulate smooth muscle activity. Although the relationship between the mucosa and smooth muscle has been investigated, little is known about the pathophysiologic changes in detrusor-mucosa interactions in neurogenic bladders. The goal of the study was to determine the impact of the mucosa on evoked responses in spinal cord injured (SCI) bladders. METHODS: Urinary bladders were obtained from 6wk SCI rats or age-matched uninjured controls. Ex vivo isometric tension studies were performed and muscarinic receptor expression was measured in bladder tissue with and without mucosa. RESULTS: The magnitude and area of nerve evoked responses in SCI tissue with mucosa was higher than without mucosa. The duration and decay time of nerve-evoked responses were longer in SCI than control tissue irrespective of the mucosa. The level of the muscarinic M2 receptor was decreased in the mucosa of SCI bladders. CONCLUSIONS: Detrusor-mucosa interactions are substantially altered in the neurogenic bladder. After spinal cord injury, an excitatory modulation of smooth muscle contraction by the mucosa emerges, and could be targeted via intravesical treatment in the context of neurogenic bladder dysfunction.


Assuntos
Potenciais Evocados , Mucosa/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária/fisiopatologia , Animais , Contração Isométrica , Masculino , Contração Muscular , Músculo Liso/fisiopatologia , Junção Neuromuscular , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/biossíntese , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/fisiopatologia
16.
J Tissue Eng Regen Med ; 12(2): e1068-e1075, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28371514

RESUMO

Surgical repair of caustic oesophageal injuries with autologous gastrointestinal segments is often associated with dysmotility, dysphagia and donor site morbidity, and therefore alternative graft options are needed. Bilayer silk fibroin (BLSF) scaffolds were assessed for their ability to support functional restoration of damaged oesophageal tissues in a rat model of onlay oesophagoplasty. Transient exposure of isolated oesophageal segments with 40% NaOH led to corrosive oesophagitis and a 91% reduction in the luminal cross-sectional area of damaged sites. Oesophageal repair with BLSF matrices was performed in injured rats (n = 27) as well as a nondiseased cohort (n = 12) for up to 2 months after implantation. Both implant groups exhibited >80% survival rates, displayed similar degrees of weight gain, and were capable of solid food consumption following a 3-day liquid diet. End-point µ-computed tomography of repaired sites demonstrated a 4.5-fold increase in luminal cross-sectional area over baseline injury levels. Reconstructed oesophageal conduits from damaged and nondiseased animals produced comparable contractile responses to KCl and electric field stimulation while isoproterenol generated similar tissue relaxation responses. Histological and immunohistochemical evaluations of neotissues from both implant groups showed formation of a stratified, squamous epithelium with robust cytokeratin expression as well as skeletal and smooth muscle layers positive for contractile protein expression. In addition, synaptophysin positive neuronal junctions and vessels lined with CD31 positive endothelial cells were also observed at graft sites in each setting. These results provide preclinical validation for the use of BLSF scaffolds in reconstructive strategies for oesophageal repair following caustic injury.


Assuntos
Esôfago/lesões , Esôfago/patologia , Fibroínas/farmacologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Cáusticos , Modelos Animais de Doenças , Esôfago/efeitos dos fármacos , Feminino , Ratos Sprague-Dawley
17.
J Tissue Eng Regen Med ; 12(2): e894-e904, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28084044

RESUMO

Partial circumferential, full thickness defects of the esophagus can occur as a result of organ perforation or tumour resection, or during surgical reconstruction of strictured segments. Complications associated with autologous tissue flaps conventionally utilized for defect repair necessitate the development of new graft options. In this study, bi-layer silk fibroin (BLSF) scaffolds were investigated for their potential to support functional restoration of partial circumferential defects in a porcine model of esophageal repair. Onlay thoracic esophagoplasty with BLSF matrices (~3 x 1.5 cm) was performed in adult swine (N = 6) for 3 months of implantation. All animals receiving BLSF grafts survived with no complications and were capable of solid food consumption. Radiographic esophagrams revealed preservation of organ continuity with no evidence of contrast extravasation or strictures. Fluoroscopic analysis demonstrated peristaltic contractions. Ex vivo tissue bath studies displayed contractile responses to carbachol, electric field stimulation, and KCl while isoproterenol produced tissue relaxation. Histological and immunohistochemical evaluations of neotissues showed a stratified, squamous epithelium, a muscularis mucosa composed of smooth muscle bundles, and a muscularis externa organized into circular and longitudinal layers, with a mix of striated skeletal muscle fascicles interspersed with smooth muscle. De novo innervation and vascularization were observed throughout the graft sites and consisted of synaptophysin-positive neuronal boutons and vessels lined with CD31-positive endothelial cells. The results of this study demonstrate that BLSF scaffolds can facilitate constructive remodeling of partial circumferential, full thickness esophageal defects in a large animal model. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Esofagoplastia , Fibroínas/farmacologia , Modelos Biológicos , Regeneração/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Suínos
18.
Sci Rep ; 7: 44416, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294142

RESUMO

Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors.


Assuntos
Inosina/administração & dosagem , Receptor A2A de Adenosina/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Bexiga Urinaria Neurogênica/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Canais de Potássio/genética , Ratos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Sulfonamidas/administração & dosagem , Triazinas/administração & dosagem , Triazóis/administração & dosagem , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/genética , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/genética , Bexiga Urinária Hiperativa/fisiopatologia , Xantinas/administração & dosagem
19.
JCI Insight ; 2(3): e90617, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28194441

RESUMO

Chronic urethral obstruction and the ensuing bladder wall remodeling can lead to diminished bladder smooth muscle (BSM) contractility and debilitating lower urinary tract symptoms. No effective pharmacotherapy exists to restore BSM contractile function. Neuropilin 2 (Nrp2) is a transmembrane protein that is highly expressed in BSM. Nrp2 deletion in mice leads to increased BSM contraction. We determined whether genetic ablation of Nrp2 could restore BSM contractility following obstruction. Partial bladder outlet obstruction (pBOO) was created by urethral occlusion in mice with either constitutive and ubiquitous, or inducible smooth muscle-specific deletion of Nrp2, and Nrp2-intact littermates. Mice without obstruction served as additional controls. Contractility was measured by isometric tension testing. Nrp2 deletion prior to pBOO increased force generation in BSM 4 weeks following surgery. Deletion of Nrp2 in mice already subjected to pBOO for 4 weeks showed increased contractility of tissues tested 6 weeks after surgery compared with nondeleted controls. Assessment of tissues from patients with urodynamically defined bladder outlet obstruction revealed reduced NRP2 levels in obstructed bladders with compensated compared with decompensated function, relative to asymptomatic controls. We conclude that downregulation of Nrp2 promotes BSM force generation. Neuropilin 2 may represent a novel target to restore contractility following obstruction.


Assuntos
Técnicas de Inativação de Genes/métodos , Neuropilina-2/genética , Obstrução do Colo da Bexiga Urinária/terapia , Bexiga Urinária/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Contração Isométrica , Masculino , Camundongos , Obstrução do Colo da Bexiga Urinária/etiologia , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Urodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...