Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
N Engl J Med ; 385(21): 1961-1973, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34788507

RESUMO

BACKGROUND: The goal of gene therapy for patients with hemophilia A is to safely impart long-term stable factor VIII expression that predictably ameliorates bleeding with the use of the lowest possible vector dose. METHODS: In this phase 1-2 trial, we infused an investigational adeno-associated viral (AAV) vector (SPK-8011) for hepatocyte expression of factor VIII in 18 men with hemophilia A. Four dose cohorts were enrolled; the lowest-dose cohort received a dose of 5 × 1011 vector genomes (vg) per kilogram of body weight, and the highest-dose cohort received 2 × 1012 vg per kilogram. Some participants received glucocorticoids within 52 weeks after vector administration either to prevent or to treat a presumed AAV capsid immune response. Trial objectives included evaluation of the safety and preliminary efficacy of SPK-8011 and of the expression and durability of factor VIII. RESULTS: The median safety observation period was 36.6 months (range, 5.5 to 50.3). A total of 33 treatment-related adverse events occurred in 8 participants; 17 events were vector-related, including 1 serious adverse event, and 16 were glucocorticoid-related. Two participants lost all factor VIII expression because of an anti-AAV capsid cellular immune response that was not sensitive to immune suppression. In the remaining 16 participants, factor VIII expression was maintained; 12 of these participants were followed for more than 2 years, and a one-stage factor VIII assay showed no apparent decrease in factor VIII activity over time (mean [±SD] factor VIII activity, 12.9±6.9% of the normal value at 26 to 52 weeks when the participants were not receiving glucocorticoids vs. 12.0±7.1% of the normal value at >52 weeks after vector administration; 95% confidence interval [CI], -2.4 to 0.6 for the difference between matched pairs). The participants had a 91.5% reduction (95% CI, 88.8 to 94.1) in the annualized bleeding rate (median rate, 8.5 events per year [range, 0 to 43.0] before vector administration vs. 0.3 events per year [range, 0 to 6.5] after vector administration). CONCLUSIONS: Sustained factor VIII expression in 16 of 18 participants who received SPK-8011 permitted discontinuation of prophylaxis and a reduction in bleeding episodes. No major safety concerns were reported. (Funded by Spark Therapeutics and the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT03003533 and NCT03432520.).


Assuntos
Dependovirus , Fator VIII/genética , Fator VIII/metabolismo , Terapia Genética , Vetores Genéticos , Hemofilia A/sangue , Adolescente , Adulto , Seguimentos , Genótipo , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Hemofilia A/genética , Hemofilia A/prevenção & controle , Hepatócitos/metabolismo , Humanos , Terapia de Imunossupressão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
Blood Adv ; 3(9): 1368-1378, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036722

RESUMO

B-domainless factor VIII (FVIII) ectopically expressed in megakaryocytes (MKs) is stored in α granules of platelets (pFVIII) and is capable of restoring hemostasis in FVIIInull mice, even in the presence of circulating inhibitors. However, our prior studies have shown that this ectopically expressed pFVIII can injure developing MKs. Moreover, the known risks of prolonged thrombocytopenia after bone marrow transplantation are significant challenges to the use of this strategy to treat individuals with severe hemophilia A and particularly those with intractable clinically relevant inhibitors. Because of these limitations, we now propose the alternative therapeutic pFVIII strategy of infusing pFVIII-expressing MKs or platelets derived from induced pluripotent stem cells (iPSCs). pFVIII-expressing iPSC-derived MKs, termed iMKs, release platelets that can contribute to improved hemostasis in problematic inhibitor patients with hemophilia A. As proof of principle, we demonstrate that hemostasis can be achieved in vitro and in vivo with pFVIII-expressing platelets and show prolonged efficacy. Notably, pFVIII-expressing platelets are also effective in the presence of inhibitors, and their effect was enhanced with recombinant FVIIa. Human pFVIII-expressing iMKs improved hemostasis in vitro, and derived platelets from infused human pFVIII-expressing iMKs improved hemostasis in FVIIInull mice. These studies indicate the potential therapeutic use of recurrent pFVIII-expressing MK or platelet infusions with prolonged hemostatic coverage that may be additive with bypassing agents in hemophilia A patients with neutralizing inhibitors.


Assuntos
Fator VIII/genética , Hemofilia A/terapia , Megacariócitos/transplante , Transfusão de Plaquetas , Animais , Área Sob a Curva , Plaquetas/citologia , Plaquetas/metabolismo , Fator VIII/análise , Fator VIII/metabolismo , Fator VIIa/uso terapêutico , Hemofilia A/mortalidade , Humanos , Masculino , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Curva ROC , Taxa de Sobrevida , Resultado do Tratamento
3.
N Engl J Med ; 377(23): 2215-2227, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29211678

RESUMO

BACKGROUND: The prevention of bleeding with adequately sustained levels of clotting factor, after a single therapeutic intervention and without the need for further medical intervention, represents an important goal in the treatment of hemophilia. METHODS: We infused a single-stranded adeno-associated viral (AAV) vector consisting of a bioengineered capsid, liver-specific promoter and factor IX Padua (factor IX-R338L) transgene at a dose of 5×1011 vector genomes per kilogram of body weight in 10 men with hemophilia B who had factor IX coagulant activity of 2% or less of the normal value. Laboratory values, bleeding frequency, and consumption of factor IX concentrate were prospectively evaluated after vector infusion and were compared with baseline values. RESULTS: No serious adverse events occurred during or after vector infusion. Vector-derived factor IX coagulant activity was sustained in all the participants, with a mean (±SD) steady-state factor IX coagulant activity of 33.7±18.5% (range, 14 to 81). On cumulative follow-up of 492 weeks among all the participants (range of follow-up in individual participants, 28 to 78 weeks), the annualized bleeding rate was significantly reduced (mean rate, 11.1 events per year [range, 0 to 48] before vector administration vs. 0.4 events per year [range, 0 to 4] after administration; P=0.02), as was factor use (mean dose, 2908 IU per kilogram [range, 0 to 8090] before vector administration vs. 49.3 IU per kilogram [range, 0 to 376] after administration; P=0.004). A total of 8 of 10 participants did not use factor, and 9 of 10 did not have bleeds after vector administration. An asymptomatic increase in liver-enzyme levels developed in 2 participants and resolved with short-term prednisone treatment. One participant, who had substantial, advanced arthropathy at baseline, administered factor for bleeding but overall used 91% less factor than before vector infusion. CONCLUSIONS: We found sustained therapeutic expression of factor IX coagulant activity after gene transfer in 10 participants with hemophilia who received the same vector dose. Transgene-derived factor IX coagulant activity enabled the termination of baseline prophylaxis and the near elimination of bleeding and factor use. (Funded by Spark Therapeutics and Pfizer; ClinicalTrials.gov number, NCT02484092 .).


Assuntos
Fator IX/genética , Terapia Genética/métodos , Vetores Genéticos , Hemofilia B/terapia , Transgenes , Adolescente , Adulto , Dependovirus/imunologia , Fator IX/metabolismo , Fator IX/uso terapêutico , Vetores Genéticos/administração & dosagem , Hemofilia B/genética , Hemofilia B/metabolismo , Hemorragia/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Blood ; 129(26): 3486-3494, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28432223

RESUMO

Friend leukemia virus integration 1 (FLI1), a critical transcription factor (TF) during megakaryocyte differentiation, is among genes hemizygously deleted in Jacobsen syndrome, resulting in a macrothrombocytopenia termed Paris-Trousseau syndrome (PTSx). Recently, heterozygote human FLI1 mutations have been ascribed to cause thrombocytopenia. We studied induced-pluripotent stem cell (iPSC)-derived megakaryocytes (iMegs) to better understand these clinical disorders, beginning with iPSCs generated from a patient with PTSx and iPSCs from a control line with a targeted heterozygous FLI1 knockout (FLI1+/-). PTSx and FLI1+/- iMegs replicate many of the described megakaryocyte/platelet features, including a decrease in iMeg yield and fewer platelets released per iMeg. Platelets released in vivo from infusion of these iMegs had poor half-lives and functionality. We noted that the closely linked E26 transformation-specific proto-oncogene 1 (ETS1) is overexpressed in these FLI1-deficient iMegs, suggesting FLI1 negatively regulates ETS1 in megakaryopoiesis. Finally, we examined whether FLI1 overexpression would affect megakaryopoiesis and thrombopoiesis. We found increased yield of noninjured, in vitro iMeg yield and increased in vivo yield, half-life, and functionality of released platelets. These studies confirm FLI1 heterozygosity results in pleiotropic defects similar to those noted with other critical megakaryocyte-specific TFs; however, unlike those TFs, FLI1 overexpression improved yield and functionality.


Assuntos
Síndrome da Deleção Distal 11q de Jacobsen/patologia , Megacariócitos/citologia , Proteína Proto-Oncogênica c-fli-1/sangue , Trombopoese , Animais , Plaquetas/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos SCID , Proto-Oncogene Mas
5.
J Clin Invest ; 125(6): 2369-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961454

RESUMO

Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell-derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 10¹³-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell-derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.


Assuntos
Antibacterianos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição GATA1/biossíntese , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Trombopoetina/farmacologia , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos
6.
Blood ; 125(23): 3627-36, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25852052

RESUMO

Thrombopoiesis is the process by which megakaryocytes release platelets that circulate as uniform small, disc-shaped anucleate cytoplasmic fragments with critical roles in hemostasis and related biology. The exact mechanism of thrombopoiesis and the maturation pathways of platelets released into the circulation remain incompletely understood. We showed that ex vivo-generated murine megakaryocytes infused into mice release platelets within the pulmonary vasculature. Here we now show that infused human megakaryocytes also release platelets within the lungs of recipient mice. In addition, we observed a population of platelet-like particles (PLPs) in the infusate, which include platelets released during ex vivo growth conditions. By comparing these 2 platelet populations to human donor platelets, we found marked differences: platelets derived from infused megakaryocytes closely resembled infused donor platelets in morphology, size, and function. On the other hand, the PLP was a mixture of nonplatelet cellular fragments and nonuniform-sized, preactivated platelets mostly lacking surface CD42b that were rapidly cleared by macrophages. These data raise a cautionary note for the clinical use of human platelets released under standard ex vivo conditions. In contrast, human platelets released by intrapulmonary-entrapped megakaryocytes appear more physiologic in nature and nearly comparable to donor platelets for clinical application.


Assuntos
Plaquetas , Macrófagos , Megacariócitos , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Linhagem Celular , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Megacariócitos/metabolismo , Megacariócitos/patologia , Megacariócitos/transplante , Camundongos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombopoese
7.
Stem Cell Res ; 15(3): 595-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26987923

RESUMO

Poikiloderma with neutropenia (PN, Clericuzio-type poikiloderma with neutropenia) is a rare autosomal recessive disorder caused by biallelic mutations in the USB1 gene (Alias C16orf57 and MPN1). To date, there have been only 37 reported cases worldwide of this disorder that presents with neutropenia, early onset poikiloderma, respiratory infections, palmo-plantar hyperkeratosis, and skeletal defects. Here we described the generation of human induced pluripotent stem cell lines (PN1 and PN2) from the peripheral blood of a 1-year-old patient using the dox-inducible STEMCCA vector. This patient presented with bacteremia, pneumonia, and neutropenia. Analysis of bone marrow demonstrated normal cellularity with trilineage hematopoiesis and neutropenia.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neutropenia/metabolismo , Anormalidades da Pele/metabolismo , Linhagem Celular , Humanos , Neutropenia/patologia , Anormalidades da Pele/patologia
8.
J Vis Exp ; (92): e52009, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25408260

RESUMO

This manuscript illustrates a protocol for efficiently creating integration-free human induced pluripotent stem cells (iPSCs) from peripheral blood using episomal plasmids and histone deacetylase (HDAC) inhibitors. The advantages of this approach include: (1) the use of a minimal amount of peripheral blood as a source material; (2) nonintegrating reprogramming vectors; (3) a cost effective method for generating vector free iPSCs; (4) a single transfection; and (5) the use of small molecules to facilitate epigenetic reprogramming. Briefly, peripheral blood mononuclear cells (PBMCs) are isolated from routine phlebotomy samples and then cultured in defined growth factors to yield a highly proliferative erythrocyte progenitor cell population that is remarkably amenable to reprogramming. Nonintegrating, nontransmissible episomal plasmids expressing OCT4, SOX2, KLF4, MYCL, LIN28A, and a p53 short hairpin (sh)RNA are introduced into the derived erythroblasts via a single nucleofection. Cotransfection of an episome that expresses enhanced green fluorescent protein (eGFP) allows for easy identification of transfected cells. A separate replication-deficient plasmid expressing Epstein-Barr nuclear antigen 1 (EBNA1) is also added to the reaction mixture for increased expression of episomal proteins. Transfected cells are then plated onto a layer of irradiated mouse embryonic fibroblasts (iMEFs) for continued reprogramming. As soon as iPSC-like colonies appear at about twelve days after nucleofection, HDAC inhibitors are added to the medium to facilitate epigenetic remodeling. We have found that the inclusion of HDAC inhibitors routinely increases the generation of fully reprogrammed iPSC colonies by 2 fold. Once iPSC colonies exhibit typical human embryonic stem cell (hESC) morphology, they are gently transferred to individual iMEF-coated tissue culture plates for continued growth and expansion.


Assuntos
Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Idoso de 80 Anos ou mais , Animais , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Camundongos
10.
Stem Cell Res ; 12(2): 441-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412757

RESUMO

The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Megacariócitos/citologia , Camundongos
11.
Blood ; 123(5): 753-7, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24335497

RESUMO

Megakaryocyte-specific transgene expression in patient-derived induced pluripotent stem cells (iPSCs) offers a new approach to study and potentially treat disorders affecting megakaryocytes and platelets. By using a Gp1ba promoter, we developed a strategy for achieving a high level of protein expression in human megakaryocytes. The feasibility of this approach was demonstrated in iPSCs derived from two patients with Glanzmann thrombasthenia (GT), an inherited platelet disorder caused by mutations in integrin αIIbß3. Hemizygous insertion of Gp1ba promoter-driven human αIIb complementary DNA into the AAVS1 locus of iPSCs led to high αIIb messenger RNA and protein expression and correction of surface αIIbß3 in megakaryocytes. Agonist stimulation of these cells displayed recovery of integrin αIIbß3 activation. Our findings demonstrate a novel approach to studying human megakaryocyte biology as well as functional correction of the GT defect, offering a potential therapeutic strategy for patients with diseases that affect platelet function.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Glicoproteínas de Membrana/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Trombastenia/genética , Transgenes , Expressão Gênica , Humanos , Complexo Glicoproteico GPIb-IX de Plaquetas , Regiões Promotoras Genéticas
12.
Blood ; 122(12): 2047-51, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23940280

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise for modeling human hematopoietic diseases. However, intrinsic variability in the capacities of different iPSC lines for hematopoietic development complicates comparative studies and is currently unexplained. We created and analyzed 3 separate iPSC clones from fibroblasts of 3 different normal individuals using a standardized approach that included excision of integrated reprogramming genes by Cre-Lox mediated recombination. Gene expression profiling and hematopoietic differentiation assays showed that independent lines from the same individual were generally more similar to one another than those from different individuals. However, one iPSC line (WT2.1) exhibited a distinctly different gene expression, proliferation rate, and hematopoietic developmental potential relative to all other iPSC lines. This "outlier" clone also acquired extensive copy number variations (CNVs) during reprogramming, which may be responsible for its divergent properties. Our data indicate how inherent and acquired genetic differences can influence iPSC properties, including hematopoietic potential.


Assuntos
Heterogeneidade Genética , Hematopoese/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Linhagem Celular , Análise por Conglomerados , Variações do Número de Cópias de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Trombopoese/genética
13.
Blood ; 121(24): 4925-9, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23620576

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children initiated by mutations that deregulate cytokine receptor signaling. Studies of JMML are constrained by limited access to patient tissues. We generated induced pluripotent stem cells (iPSCs) from malignant cells of two JMML patients with somatic heterozygous p.E76K missense mutations in PTPN11, which encodes SHP-2, a nonreceptor tyrosine phosphatase. In vitro differentiation of JMML iPSCs produced myeloid cells with increased proliferative capacity, constitutive activation of granulocyte macrophage colony-stimulating factor (GM-CSF), and enhanced STAT5/ERK phosphorylation, similar to primary JMML cells from patients. Pharmacological inhibition of MEK kinase in iPSC-derived JMML cells reduced their GM-CSF independence, providing rationale for a potential targeted therapy. Our studies offer renewable sources of biologically relevant human cells in which to explore the pathophysiology and treatment of JMML. More generally, we illustrate the utility of iPSCs for in vitro modeling of a human malignancy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mielomonocítica Juvenil/metabolismo , Mutação de Sentido Incorreto , Células-Tronco Neoplásicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patologia , Masculino , Células-Tronco Neoplásicas/patologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Células Tumorais Cultivadas
14.
Blood ; 121(17): 3319-24, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23321255

RESUMO

Platelet transfusions are often a life-saving intervention, and the use of platelet transfusions has been increasing. Donor-derived platelet availability can be challenging. Compounding this concern are additional limitations of donor-derived platelets, including variability in product unit quality and quantity, limited shelf life and the risks of product bacterial contamination, other transfusion-transmitted infections, and immunologic reactions. Because of these issues, there has been an effort to develop strategies to generate platelets from exogenously generated precursor cells. If successful, such platelets have the potential to be a safer, more consistent platelet product, while reducing the necessity for human donations. Moreover, ex vivo-generated autologous platelets or precursors may be beneficial for patients who are refractory to allogeneic platelets. For patients with inherited platelet disorders, ex vivo-generated platelets offer the promise of a treatment via the generation of autologous gene-corrected platelets. Theoretically, ex vivo-generated platelets also offer targeted delivery of ectopic proteins to sites of vascular injury. This review summarizes the current, state-of-the-art methodologies in delivering a clinically relevant ex vivo-derived platelet product, and it discusses significant challenges that must be overcome for this approach to become a clinical reality.


Assuntos
Transtornos Plaquetários/terapia , Plaquetas/fisiologia , Doadores de Tecidos , Humanos , Transfusão de Plaquetas
15.
Orphanet J Rare Dis ; 7: 7, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22269211

RESUMO

BACKGROUND: Poikiloderma with Neutropenia (PN) is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. RESULTS: We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding.Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. CONCLUSIONS: In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the main cutaneous and haematological clinical signs of PN patients.


Assuntos
Cromossomos Humanos Par 16/genética , Biologia Computacional/métodos , Mutação , Neutropenia/genética , Neutropenia/patologia , Fases de Leitura Aberta/genética , Proteínas/genética , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/patologia , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Neutropenia/diagnóstico , Síndrome de Rothmund-Thomson/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...