Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Commun ; 15(1): 4385, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782906

RESUMO

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Camundongos , Mutação , Ribossomos/metabolismo , Biossíntese de Proteínas , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Diferenciação Celular , Humanos
2.
mBio ; : e0295423, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747593

RESUMO

The protozoan parasite Toxoplasma gondii causes serious opportunistic disease due to its ability to persist in patients as latent tissue cysts. The molecular mechanisms coordinating conversion between proliferative parasites (tachyzoites) and latent cysts (bradyzoites) are not fully understood. We previously showed that phosphorylation of eIF2α accompanies bradyzoite formation, suggesting that this clinically relevant process involves regulation of mRNA translation. In this study, we investigated the composition and role of eIF4F multi-subunit complexes in translational control. Using CLIPseq, we find that the cap-binding subunit, eIF4E1, localizes to the 5'-end of all tachyzoite mRNAs, many of which show evidence of stemming from heterogeneous transcriptional start sites. We further show that eIF4E1 operates as the predominant cap-binding protein in two distinct eIF4F complexes. Using genetic and pharmacological approaches, we found that eIF4E1 deficiency triggers efficient spontaneous formation of bradyzoites without stress induction. Consistent with this result, we also show that stress-induced bradyzoites exhibit reduced eIF4E1 expression. Overall, our findings establish a novel role for eIF4F in translational control required for parasite latency and microbial persistence. IMPORTANCE: Toxoplasma gondii is an opportunistic pathogen important to global human and animal health. There are currently no chemotherapies targeting the encysted form of the parasite. Consequently, a better understanding of the mechanisms controlling encystation is required. Here we show that the mRNA cap-binding protein, eIF4E1, regulates the encystation process. Encysted parasites reduce eIF4E1 levels, and depletion of eIF4E1 decreases the translation of ribosome-associated machinery and drives Toxoplasma encystation. Together, these data reveal a new layer of mRNA translational control that regulates parasite encystation and latency.

3.
Int J Parasitol Drugs Drug Resist ; 23: 120-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043188

RESUMO

Toxoplasma gondii is an obligate intracellular parasite in the phylum Apicomplexa that causes toxoplasmosis in humans and animals worldwide. Despite its prevalence, there is currently no effective vaccine or treatment for chronic infection. Although there are therapies against the acute stage, prolonged use is toxic and poorly tolerated. This study aims to explore the potential of repurposing topotecan and 10-hydroxycamptothecin (HCPT) as drugs producing double strand breaks (DSBs) in T. gondii. DSBs are mainly repaired by Homologous Recombination Repair (HRR) and Non-Homologous End Joining (NHEJ). Two T. gondii strains, RHΔHXGPRT and RHΔKU80, were used to compare the drug's effects on parasites. RHΔHXGPRT parasites may use both HRR and NHEJ pathways but RHΔKU80 lacks the KU80 protein needed for NHEJ, leaving only the HRR pathway. Here we demonstrate that topotecan and HCPT, both topoisomerase I venoms, affected parasite replication in a concentration-dependent manner. Moreover, variations in fluorescence intensity measurements for the H2A.X phosphorylation mark (γH2A.X), an indicator of DNA damage, were observed in intracellular parasites under drug treatment conditions. Interestingly, intracellular replicative parasites without drug treatment show a strong positive staining for γH2A.X, suggesting inherent DNA damage. Extracellular (non-replicating) parasites did not exhibit γH2A.X staining, indicating that the basal level of DNA damage is likely to be associated with replicative stress. A high rate of DNA replication stress possibly prompted the evolution of an efficient repair machinery in the parasite, making it an attractive target. Our findings show that topoisomerase 1 venoms are effective antiparasitics blocking T. gondii replication.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/genética , Topotecan/farmacologia , Topotecan/metabolismo , Reparo do DNA , Dano ao DNA
4.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961607

RESUMO

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (Δ eIF1.2 ) markedly impeded bradyzoite cyst formation in vitro and in vivo . We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that Δ eIF1.2 parasites are defective in the upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in Δ eIF1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.

5.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873335

RESUMO

The protozoan parasite Toxoplasma gondii causes serious opportunistic disease due to its ability to persist in patients as latent tissue cysts. The molecular mechanisms coordinating conversion between proliferative parasites (tachyzoites) and dormant cysts (bradyzoites) are not fully understood. We previously showed that phosphorylation of eIF2α accompanies bradyzoite formation, suggesting that this clinically relevant process involves regulation of mRNA translation. In this study, we investigated the composition and role of eIF4F multi-subunit complexes in translational control. Using CLIPseq, we find that the cap-binding subunit, eIF4E1, localizes to the 5'-end of all tachyzoite mRNAs, many of which show evidence of stemming from heterogenous transcriptional start sites. We further show that eIF4E1 operates as the predominant cap-binding protein in two distinct eIF4F complexes. Using genetic and pharmacological approaches, we found that eIF4E1 deficiency triggers efficient spontaneous formation of bradyzoites without stress induction. Consistent with this result, we also show that stress-induced bradyzoites exhibit reduced eIF4E1 expression. Overall, our findings establish a novel role for eIF4F in translational control required for parasite latency and microbial persistence.

6.
Nat Commun ; 14(1): 6078, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770433

RESUMO

Identification of regulators of Toxoplasma gondii bradyzoite development and cyst formation is the most direct way to address the importance of parasite development in long-term persistence and reactivation of this parasite. Here we show that a T. gondii gene (named Regulator of Cystogenesis 1; ROCY1) is sufficient for T. gondii bradyzoite formation in vitro and in vivo. ROCY1 encodes an RNA binding protein that has a preference for 3' regulatory regions of hundreds of T. gondii transcripts, and its RNA-binding domains are required to mediate bradyzoite development. Female mice infected with ΔROCY1 parasites have reduced (>90%) cyst burden. While viable parasites can be cultivated from brain tissue for up to 6 months post-infection, chronic brain-resident ΔROCY1 parasites have reduced oral infectivity compared to wild type. Despite clear defects in bradyzoite formation and oral infectivity, ΔROCY1 parasites were able to reactivate with similar timing and magnitude as wild type parasites for up to 5 months post-infection. Therefore while ROCY1 is a critical regulator of the bradyzoite developmental pathway, it is not required for parasite reactivation, raising new questions about the persisting life stage responsible for causing recrudescent disease.


Assuntos
Toxoplasma , Feminino , Animais , Camundongos , Toxoplasma/metabolismo , Redes Reguladoras de Genes , Recidiva Local de Neoplasia , Encéfalo/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
J Am Geriatr Soc ; 71(9): 2855-2864, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224397

RESUMO

BACKGROUND: Older adult Veterans are at high risk for adverse health outcomes following hospitalization. Since physical function is one of the largest potentially modifiable risk factors for adverse health outcomes, our purpose was to determine if progressive, high-intensity resistance training in home health physical therapy (PT) improves physical function in Veterans more than standardized home health PT and to determine if the high-intensity program was comparably safe, defined as having a similar number of adverse events. METHODS: We enrolled Veterans and their spouses during an acute hospitalization who were recommended to receive home health care on discharge because of physical deconditioning. We excluded individuals who had contraindications to high-intensity resistance training. A total of 150 participants were randomized 1:1 to either (1) a progressive, high-intensity (PHIT) PT intervention or (2) a standardized PT intervention (comparison group). All participants in both groups were assigned to receive 12 visits (3 visits/week over 30 days) in their home. The primary outcome was gait speed at 60 days. Secondary outcomes included adverse events (rehospitalizations, emergency department visits, falls and deaths after 30 and 60-days), gait speed, Modified Physical Performance Test, Timed Up-and-Go, Short Physical Performance Battery, muscle strength, Life-Space Mobility assessment, Veterans RAND 12-item Health Survey, Saint Louis University Mental Status exam, and step counts at 30, 60, 90, 180 days post-randomization. RESULTS: There were no differences between groups in gait speed at 60 days, and no significant differences in adverse events between groups at either time point. Similarly, physical performance measures and patient reported outcomes were not different at any time point. Notably, participants in both groups experienced increases in gait speed that met or exceeded established clinically important thresholds. CONCLUSIONS: Among older adult Veterans with hospital-associated deconditioning and multimorbidity, high-intensity home health PT was safe and effective in improving physical function, but not found to be more effective than a standardized PT program.


Assuntos
Veteranos , Humanos , Idoso , Modalidades de Fisioterapia , Hospitalização , Readmissão do Paciente , Alta do Paciente
8.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194943, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37217032

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants are important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). The c-Myc-A mutant displayed no phenotype over than a mild defect in its ability to kill mice. The c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. The c-Myc-R mutant was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that regulation of the N-terminal positive charge patch of H2B.Z is important for these processes. We also show that acetylated N-terminal H2B.Z interacts with some unique proteins compared to its unacetylated counterpart; the acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, suggesting a link between H2B.Z acetylation status and mitosis.


Assuntos
Histonas , Toxoplasma , Animais , Camundongos , Histonas/metabolismo , Toxoplasma/genética , Acetilação , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional
9.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36824796

RESUMO

Through regulation of DNA packaging, histone proteins are fundamental to a wide array of biological processes. A variety of post-translational modifications (PTMs), including acetylation, constitute a proposed histone code that is interpreted by "reader" proteins to modulate chromatin structure. Canonical histones can be replaced with variant versions that add an additional layer of regulatory complexity. The protozoan parasite Toxoplasma gondii is unique among eukaryotes in possessing a novel variant of H2B designated H2B.Z. The combination of PTMs and the use of histone variants is important for gene regulation in T. gondii, offering new targets for drug development. In this work, T. gondii parasites were generated in which the 5 N-terminal acetylatable lysines in H2B.Z were mutated to either alanine (c-Myc-A) or arginine (c-Myc-R). c-Myc-A mutant only displayed a mild effect in its ability to kill mice. c-Myc-R mutant presented an impaired ability to grow and an increase in differentiation to latent bradyzoites. This mutant line was also more sensitive to DNA damage, displayed no virulence in mice, and provided protective immunity against future infection. While nucleosome composition was unaltered, key genes were abnormally expressed during in vitro bradyzoite differentiation. Our results show that the N-terminal positive charge patch of H2B.Z is important for these procceses. Pull down assays with acetylated N-terminal H2B.Z peptide and unacetylated one retrieved common and differential interactors. Acetylated peptide pulled down proteins associated with chromosome maintenance/segregation and cell cycle, opening the question of a possible link between H2B.Z acetylation status and mitosis.

10.
mSphere ; 8(2): e0060622, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36786611

RESUMO

Toxoplasma gondii is a widespread protozoan parasite that has a significant impact on human and veterinary health. The parasite undergoes a complex life cycle involving multiple hosts and developmental stages. How Toxoplasma transitions between life cycle stages is poorly understood yet central to controlling transmission. Of particular neglect are the factors that contribute to its sexual development, which takes place exclusively in feline intestines. While epigenetic repressors have been shown to play an important role in silencing the spurious gene expression of sexually committed parasites, the specific factors that recruit this generalized machinery to the appropriate genes remain largely unexplored. Here, we establish that a member of the AP2 transcription factor family, AP2XII-2, is targeted to genomic loci associated with sexually committed parasites along with epigenetic regulators of transcriptional silencing, HDAC3 and MORC. Despite its widespread association with gene promoters, AP2XII-2 is required for the silencing of relatively few genes. Using the CUT&Tag (cleavage under targets and tagmentation) methodology, we identify two major genes associated with sexual development downstream of AP2XII-2 control, AP2X-10 and the amino acid hydroxylase AAH1. Our findings show that AP2XII-2 is a key contributor to the gene regulatory pathways modulating Toxoplasma sexual development. IMPORTANCE Toxoplasma gondii is a parasite that undergoes its sexual stage exclusively in feline intestines, making cats a major source of transmission. A better understanding of the proteins controlling the parasite's life cycle stage transitions is needed for the development of new therapies aimed at treating toxoplasmosis and the transmission of the infection. Genes that regulate the sexual stages need to be turned on and off at the appropriate times, activities that are mediated by specific transcription factors that recruit general machinery to silence or activate gene expression. In this study, we identify a transcription factor called AP2XII-2 as being important for the repression of a subset of sexual stage genes, including a sexual stage-specific AP2 factor (AP2X-10) and a protein (AAH1) required to construct the infectious oocysts expelled from infected cats.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Gatos , Humanos , Expressão Gênica , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Fatores de Transcrição/genética
11.
Eur Spine J ; 31(12): 3262-3273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326928

RESUMO

PURPOSE: Globally, spine disorders are the leading cause of disability, affecting more than half a billion individuals. However, less than 50% of G20 countries specifically identify spine health within their public policy priorities. Therefore, it is crucial to raise awareness among policy makers of the disabling effect of spine disorders and their impact on the economic welfare of G20 nations. In 2019, SPINE20 was established as the leading advocacy group to bring global attention to spine disorders. METHODS: Recommendations were developed through two Delphi methods with international and multi-professional panels. RESULTS: In 2022, seven recommendations were delivered to the leaders of G20 countries, urging them to: Develop action plans to provide universal access to evidence-based spine care that incorporates the needs of minorities and vulnerable populations. Invest in the development of sustainable human resource capacity, through multisectoral and inter-professional competency-based education and training to promote evidence-based approaches to spine care, and to build an appropriate healthcare working environment that optimizes the delivery of safe health services. Develop policies using the best available evidence to properly manage spine disorders and to prolong functional healthy life expectancy in the era of an aging population. Create a competent workforce and improve the healthcare infrastructure/facilities including equipment to provide evidence-based inter-professional rehabilitation services to patients with spinal cord injury throughout their continuum of care. Build collaborative and innovative translational research capacity within national, regional, and global healthcare systems for state-of-the-art and cost-effective spine care across the healthcare continuum ensuring equality, diversity, and inclusion of all stakeholders. Develop international consensus statements on patient outcomes and how they can be used to define and develop pathways for value-based care. Recognize that intervening on determinants of health including physical activity, nutrition, physical and psychosocial workplace environment, and smoking-free lifestyle can reduce the burden of spine disabilities and improve the health status and wellness of the population. At the third SPINE20 summit 2022 which took place in Bali, Indonesia, in August 2022, 17 associations endorsed its recommendations. CONCLUSION: SPINE20 advocacy efforts focus on developing public policy recommendations to improve the health, welfare, and wellness of all who suffer from spinal pain and disability. We propose that focusing on facilitating access to systems that prioritize value-based care delivered by a competent healthcare workforce will reduce disability and improve the productivity of the G20 nations.


Assuntos
Atenção à Saúde , Doenças da Coluna Vertebral , Humanos , Idoso , Consenso
12.
mSphere ; 7(3): e0013122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638357

RESUMO

Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. Since infection is acquired by ingestion of cysts from contaminated food and water, this parasite is prevalent in underdeveloped countries. A reptilian pathogen, Entamoeba invadens, which can encyst in culture, has long served as a surrogate to study stage conversion. In the host, Entamoeba species must manage stress, including nutrient deprivation and host immune pressure. In many systems, the stress response is characterized by downregulation of translation, which is initiated by the phosphorylation of eukaryotic initiation factor-2 alpha (eIF2α). In mammalian cells, this phosphorylation is carried out by a family of eIF2α kinases. A canonical eIF2α translational control system exists in Entamoeba species; however, no eIF2α kinases have been characterized. In this study, we identified two eIF2α kinases in E. invadens, EiIF2K-A and EiIF2K-B. Their identity as eIF2α kinases was validated using a heterologous yeast system. We used an RNA interference (RNAi) trigger-mediated silencing system to reduce expression of EiIF2K-A, which also reduced expression of EiIF2K-B. Parasites with decreased kinase expression exhibited decreased phosphorylation of eIF2α and increased sensitivity to oxidative stress. Diminished kinase expression also correlated with an increased rate of encystation, a decreased rate of excystation, and an increase in several virulence functions, erythrophagocytosis and adhesion to host cells. Taken together, these data suggest that EiIF2K-A and EiIF2K-B are authentic eIF2α kinases that may regulate the Entamoeba stress response. IMPORTANCE Entamoeba histolytica is a human pathogen that causes dysentery and affects millions of people worldwide. This parasite possesses a two-stage life cycle: an environmentally stable cyst and the pathogenic trophozoite. Cysts are ingested from contaminated food and water; thus, this parasite in prevalent in underdeveloped countries. Current therapies commonly cause adverse side effects; therefore, new treatments are needed. In the host, Entamoeba experiences stress brought on, in part, by the host immune system. Understanding stage conversion and the stress response of this pathogen may lead to new drug therapies. Using the model organism E. invadens, we identified two kinases similar to those involved in stress and stage conversion in other systems. We determined that these kinases may regulate the oxidative stress response, stage conversion, and virulence. This work is significant, as it will inform future studies on the life cycle and pathogenicity of Entamoeba species.


Assuntos
Cistos , Entamoeba histolytica , Entamoeba , Animais , Entamoeba/genética , Entamoeba histolytica/genética , Humanos , Estágios do Ciclo de Vida , Mamíferos , Virulência , Água , eIF-2 Quinase
13.
Eur Spine J ; 31(6): 1333-1342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35391625

RESUMO

PURPOSE: The focus of SPINE20 is to develop evidence-based policy recommendations for the G20 countries to work with governments to reduce the burden of spine disease, and disability. METHODS: On September 17-18, 2021, SPINE20 held its annual meeting in Rome, Italy. Prior to the meeting, the SPINE20 created six proposed recommendations. These recommendations were uploaded to the SPINE20 website 10 days before the meeting and opened to the public for comments. The recommendations were discussed at the meeting allowing the participants to object and provide comments. RESULTS: In total, 27 societies endorsed the following recommendations. SPINE20 calls upon the G20 countries: (1) to expand telehealth for the access to spine care, especially in light of the current situation with COVID-19. (2) To adopt value-based interprofessional spine care as an approach to improve patient outcomes and reduce disability. (3) To facilitate access and invest in the development of a competent rehabilitation workforce to reduce the burden of disability related to spine disorders. (4) To adopt a strategy to promote daily physical activity and exercises among the elderly population to maintain an active and independent life with a healthy spine, particularly after COVID-19 pandemic. (5) To engage in capacity building with emerging countries and underserved communities for the benefit of spine patients. (6) To promote strategies to transfer evidence-based advances into patient benefit through effective implementation processes. CONCLUSIONS: SPINE20's initiatives will make governments and decision makers aware of efforts to reduce needless suffering from disabling spine pain through education that can be instituted across the globe.


Assuntos
COVID-19 , Doenças da Coluna Vertebral , Idoso , Humanos , Itália , Pandemias/prevenção & controle , Doenças da Coluna Vertebral/terapia
14.
BMC Genomics ; 23(1): 128, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164683

RESUMO

BACKGROUND: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.


Assuntos
Histonas , Toxoplasma , Cromatina/genética , Expressão Gênica , Histonas/genética , Nucleossomos/genética , Toxoplasma/genética
15.
Mol Biochem Parasitol ; 245: 111411, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492239

RESUMO

Toxoplasma gondii is a protozoan parasite that causes opportunistic infection in immunocompromised individuals. The parasite forms latent tissue cysts that are refractory to current treatments and give rise to life-threatening reactivated infection following immune suppression. Previously, we showed that guanabenz sharply reduces brain cyst count in BALB/c mice harboring latent toxoplasmosis; however, whether cyst count would change once drug treatment stopped was not addressed. In the present study, we observed a rebound in brain cysts following the discontinuation of guanabenz or a guanabenz-pyrimethamine combination therapy. The re-expansion of brain cysts was not accompanied by symptoms of acute toxoplasmosis. We also tested whether the rebound in cyst counts could be ameliorated by administering pyrimethamine during or after guanabenz treatment.


Assuntos
Guanabenzo , Toxoplasma , Toxoplasmose , Animais , Guanabenzo/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Recidiva , Toxoplasmose/tratamento farmacológico
16.
PLoS Pathog ; 17(7): e1009335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324585

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can cause serious opportunistic disease in the immunocompromised or through congenital infection. To progress through its life cycle, Toxoplasma relies on multiple layers of gene regulation that includes an array of transcription and epigenetic factors. Over the last decade, the modification of mRNA has emerged as another important layer of gene regulation called epitranscriptomics. Here, we report that epitranscriptomics machinery exists in Toxoplasma, namely the methylation of adenosines (m6A) in mRNA transcripts. We identified novel components of the m6A methyltransferase complex and determined the distribution of m6A marks within the parasite transcriptome. m6A mapping revealed the modification to be preferentially located near the 3'-boundary of mRNAs. Knockdown of the m6A writer components METTL3 and WTAP resulted in diminished m6A marks and a complete arrest of parasite replication. Furthermore, we examined the two proteins in Toxoplasma that possess YTH domains, which bind m6A marks, and showed them to be integral members of the cleavage and polyadenylation machinery that catalyzes the 3'-end processing of pre-mRNAs. Loss of METTL3, WTAP, or YTH1 led to a defect in transcript 3'-end formation. Together, these findings establish that the m6A epitranscriptome is essential for parasite viability by contributing to the processing of mRNA 3'-ends.


Assuntos
Sobrevivência Celular/fisiologia , Metiltransferases/metabolismo , Processamento de Terminações 3' de RNA/fisiologia , RNA Mensageiro/metabolismo , Toxoplasma/metabolismo , Células Cultivadas , Epigênese Genética/fisiologia , Humanos , Metilação
17.
Trends Parasitol ; 37(8): 684-686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147337

RESUMO

To curtail the rising tide of antiscience threatening the health and progress of society, scientists are increasingly engaging with the public. Here, we describe our approach to write accessible books based on personal stories as a means to help spread scientific literacy to those who normally do not read science.


Assuntos
Comunicação , Ciência/educação , Saúde Pública
18.
Spine J ; 21(9): 1460-1472, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087478

RESUMO

BACKGROUND CONTEXT: High quality evidence is difficult to generate, leaving substantial knowledge gaps in the treatment of spinal conditions. Appropriate use criteria (AUC) are a means of determining appropriate recommendations when high quality evidence is lacking. PURPOSE: Define appropriate use criteria (AUC) of cervical fusion for treatment of degenerative conditions of the cervical spine. STUDY DESIGN/SETTING: Appropriate use criteria for cervical fusion were developed using the RAND/UCLA appropriateness methodology. Following development of clinical guidelines and scenario writing, a one-day workshop was held with a multidisciplinary group of 14 raters, all considered thought leaders in their respective fields, to determine final ratings for cervical fusion appropriateness for various clinical situations. OUTCOME MEASURES: Final rating for cervical fusion recommendation as either "Appropriate," "Uncertain" or "Rarely Appropriate" based on the median final rating among the raters. METHODS: Inclusion criteria for scenarios included patients aged 18 to 80 with degenerative conditions of the cervical spine. Key modifiers were defined and combined to develop a matrix of clinical scenarios. The median score among the raters was used to determine the final rating for each scenario. The final rating was compared between modifier levels. Spearman's rank correlation between each modifier and the final rating was determined. A multivariable ordinal regression model was fit to determine the adjusted odds of an "Appropriate" final rating while adjusting for radiographic diagnosis, number of levels and symptom type. Three decision trees were developed using decision tree classification models and variable importance for each tree was computed. RESULTS: Of the 263 scenarios, 47 (17.9 %) were rated as rarely appropriate, 66 (25%) as uncertain and 150 (57%) were rated as appropriate. Symptom type was the modifier most strongly correlated with the final rating (adjusted ρ2 = 0.58, p<.01). A multivariable ordinal regression adjusting for symptom type, diagnosis, and number of levels and showed high discriminative ability (C statistic = 0.90) and the adjusted odds ratio (aOR) of receiving a final rating of "Appropriate" was highest for myelopathy (aOR, 7.1) and radiculopathy (aOR, 4.8). Three decision tree models showed that symptom type and radiographic diagnosis had the highest variable importance. CONCLUSIONS: Appropriate use criteria for cervical fusion in the setting of cervical degenerative disorders were developed. Symptom type was most strongly correlated with final rating. Myelopathy or radiculopathy were most strongly associated with an "Appropriate" rating, while axial pain without stenosis was most associated with "Rarely Appropriate."


Assuntos
Radiculopatia , Doenças da Medula Espinal , Doenças da Coluna Vertebral , Fusão Vertebral , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Humanos , Doenças da Coluna Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/cirurgia , Resultado do Tratamento
19.
Eur Spine J ; 30(8): 2091-2101, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34106349

RESUMO

PURPOSE: The Global Burden of Diseases (GBD) Studies have estimated that low back pain is one of the costliest ailments worldwide. Subsequent to GBD publications, leadership of the four largest global spine societies agreed to form SPINE20. This article introduces the concept of SPINE20, the recommendations, and the future of this global advocacy group linked to G20 annual summits. METHODS: The founders of SPINE20 advocacy group coordinated with G20 Saudi Arabia to conduct the SPINE20 summit in 2020. The summit was intended to promote evidence-based recommendations to use the most reliable information from high-level research. Eight areas of importance to mitigate spine disorders were identified through a voting process of the participating societies. Twelve recommendations were discussed and vetted. RESULTS: The areas of immediate concern were "Aging spine," "Future of spine care," "Spinal cord injuries," "Children and adolescent spine," "Spine-related disability," "Spine Educational Standards," "Patient safety," and "Burden on economy." Twelve recommendations were created and endorsed by 31/33 spine societies and 2 journals globally during a vetted process through the SPINE20.org website and during the virtual inaugural meeting November 10-11, 2020 held from the G20 platform. CONCLUSIONS: This is the first time that international spine societies have joined to support actions to mitigate the burden of spine disorders across the globe. SPINE20 seeks to change awareness and treatment of spine pain by supporting local projects that implement value-based practices with healthcare policies that are culturally sensitive based on scientific evidence.


Assuntos
Pessoas com Deficiência , Dor Lombar , Doenças da Coluna Vertebral , Adolescente , Criança , Carga Global da Doença , Humanos , Coluna Vertebral
20.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500345

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not yet clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eukaryotic initiation factor 2 (eIF2). Here, we show that the Toxoplasma eIF2 kinase TgIF2K-B is activated in response to oxidative stress and affords protection. Knockout of the TgIF2K-B gene, Δtgif2k-b, disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite's ability to establish persistent infection in its host.IMPORTANCEToxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite's oxidative stress response and its ability to persist in the host as a latent infection.


Assuntos
Interações Hospedeiro-Parasita , Estresse Oxidativo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Técnicas de Inativação de Genes , Humanos , Masculino , Fosforilação , Estresse Fisiológico , Toxoplasma/enzimologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...