Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Geosci ; 15(3): 158-164, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300262

RESUMO

Water potential directly controls the function of leaves, roots, and microbes, and gradients in water potential drive water flows throughout the soil-plant-atmosphere continuum. Notwithstanding its clear relevance for many ecosystem processes, soil water potential is rarely measured in-situ, and plant water potential observations are generally discrete, sparse, and not yet aggregated into accessible databases. These gaps limit our conceptual understanding of biophysical responses to moisture stress and inject large uncertainty into hydrologic and land surface models. Here, we outline the conceptual and predictive gains that could be made with more continuous and discoverable observations of water potential in soils and plants. We discuss improvements to sensor technologies that facilitate in situ characterization of water potential, as well as strategies for building new networks that aggregate water potential data across sites. We end by highlighting novel opportunities for linking more representative site-level observations of water potential to remotely-sensed proxies. Together, these considerations offer a roadmap for clearer links between ecohydrological processes and the water potential gradients that have the 'potential' to substantially reduce conceptual and modeling uncertainties.

4.
Glob Chang Biol ; 27(20): 5392-5403, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241937

RESUMO

Microbially explicit models may improve understanding and projections of carbon dynamics in response to future climate change, but their fidelity in simulating global-scale soil heterotrophic respiration (RH ), a stringent test for soil biogeochemical models, has never been evaluated. We used statistical global RH products, as well as 7821 daily site-scale RH measurements, to evaluate the spatiotemporal performance of one first-order decay model (CASA-CNP) and two microbially explicit biogeochemical models (CORPSE and MIMICS) that were forced by two different input datasets. CORPSE and MIMICS did not provide any measurable performance improvement; instead, the models were highly sensitive to the input data used to drive them. Spatial variability in RH fluxes was generally well simulated except in the northern middle latitudes (~50°N) and arid regions; models captured the seasonal variability of RH well, but showed more divergence in tropic and arctic regions. Our results demonstrate that the next generation of biogeochemical models shows promise but also needs to be improved for realistic spatiotemporal variability of RH . Finally, we emphasize the importance of net primary production, soil moisture, and soil temperature inputs, and that jointly evaluating soil models for their spatial (global scale) and temporal (site scale) performance provides crucial benchmarks for improving biogeochemical models.


Assuntos
Ciclo do Carbono , Solo , Carbono , Processos Heterotróficos , Respiração
5.
Glob Chang Biol ; 27(12): 2633-2644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33668074

RESUMO

Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO2 , yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics.


Assuntos
Carbono , Solo , Biomassa , Minerais , Microbiologia do Solo
7.
Glob Chang Biol ; 26(12): 6631-6643, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33064359

RESUMO

Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon-climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool-based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment. The dynamic processes that control the physicochemical protection of carbon translate poorly to pool-based SOC models; as a result, we are challenged to mechanistically predict how environmental change will impact movement of carbon between soils and the atmosphere. Here, we propose a novel conceptual framework to explore controls on belowground carbon cycling: Probabilistic Representation of Organic Matter Interactions within the Soil Environment (PROMISE). In contrast to traditional model frameworks, PROMISE does not attempt to define carbon pools united by common thermodynamic or functional attributes. Rather, the PROMISE concept considers how SOC cycling rates are governed by the stochastic processes that influence the proximity between microbial decomposers and organic matter, with emphasis on their physical location in the soil matrix. We illustrate the applications of this framework with a new biogeochemical simulation model that traces the fate of individual carbon atoms as they interact with their environment, undergoing biochemical transformations and moving through the soil pore space. We also discuss how the PROMISE framework reshapes dialogue around issues related to SOC management in a changing world. We intend the PROMISE framework to spur the development of new hypotheses, analytical tools, and model structures across disciplines that will illuminate mechanistic controls on the flow of carbon between plant, soil, and atmospheric pools.


Assuntos
Carbono , Solo , Ciclo do Carbono , Clima , Plantas
8.
Nature ; 561(7724): 538-541, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232452

RESUMO

Plants influence the atmosphere through fluxes of carbon, water and energy1, and can intensify drought through land-atmosphere feedback effects2-4. The diversity of plant functional traits in forests, especially physiological traits related to water (hydraulic) transport, may have a critical role in land-atmosphere feedback, particularly during drought. Here we combine 352 site-years of eddy covariance measurements from 40 forest sites, remote-sensing observations of plant water content and plant functional-trait data to test whether the diversity in plant traits affects the response of the ecosystem to drought. We find evidence that higher hydraulic diversity buffers variation in ecosystem flux during dry periods across temperate and boreal forests. Hydraulic traits were the predominant significant predictors of cross-site patterns in drought response. By contrast, standard leaf and wood traits, such as specific leaf area and wood density, had little explanatory power. Our results demonstrate that diversity in the hydraulic traits of trees mediates ecosystem resilience to drought and is likely to have an important role in future ecosystem-atmosphere feedback effects in a changing climate.


Assuntos
Aclimatação/fisiologia , Biodiversidade , Secas , Florestas , Árvores/anatomia & histologia , Árvores/fisiologia , Água/metabolismo , Atmosfera/química , Mudança Climática , Retroalimentação , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Madeira/anatomia & histologia , Madeira/metabolismo
9.
Glob Chang Biol ; 24(3): 895-905, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28991399

RESUMO

The complexity of processes and interactions that drive soil C dynamics necessitate the use of proxy variables to represent soil characteristics that cannot be directly measured (correlative proxies), or that aggregate information about multiple soil characteristics into one variable (integrative proxies). These proxies have proven useful for understanding the soil C cycle, which is highly variable in both space and time, and are now being used to make predictions of the fate and persistence of C under future climate scenarios. However, the C pools and processes that proxies represent must be thoughtfully considered in order to minimize uncertainties in empirical understanding. This is necessary to capture the full value of a proxy in model parameters and in model outcomes. Here, we provide specific examples of proxy variables that could improve decision-making, and modeling skill, while also encouraging continued work on their mechanistic underpinnings. We explore the use of three common soil proxies used to study soil C cycling: metabolic quotient, clay content, and physical fractionation. We also consider how emerging data types, such as genome-sequence data, can serve as proxies for microbial community activities. By examining some broad assumptions in soil C cycling with the proxies already in use, we can develop new hypotheses and specify criteria for new and needed proxies.


Assuntos
Ciclo do Carbono , Carbono/química , Mudança Climática , Solo/química , Carbono/metabolismo , Modelos Teóricos , Microbiologia do Solo
10.
Glob Chang Biol ; 24(4): 1563-1579, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29120516

RESUMO

Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0-100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, temperature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. By providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about factors regulating the turnover of soil organic matter.


Assuntos
Ciclo do Carbono , Modelos Teóricos , Solo/química , Carbono/química , Mudança Climática , Congelamento , Processos Heterotróficos , Microbiologia do Solo , Temperatura , Fatores de Tempo , Incerteza
11.
Ecol Lett ; 20(8): 1043-1053, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28669138

RESUMO

Ecosystem carbon (C) balance is hypothesised to be sensitive to the mycorrhizal strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality-based plant nitrogen (N) acquisition model with a microbe-focused soil organic matter (SOM) model. The model accurately predicted rhizosphere processes and C-N dynamics across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees. When mycorrhizal dominance was switched - ECM trees dominating plots previously occupied by AM trees, and vice versa - legacy effects were apparent, with consequences for both C and N stocks in soil. Under elevated productivity, ECM trees enhanced decomposition more than AM trees via microbial priming of unprotected SOM. Collectively, our results show that ecosystem responses to global change may hinge on the balance between rhizosphere priming and SOM protection, and highlight the importance of dynamically linking plants and microbes in terrestrial biosphere models.


Assuntos
Micorrizas , Rizosfera , Nitrogênio , Solo , Microbiologia do Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...