Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
NPJ Precis Oncol ; 8(1): 10, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200223

RESUMO

The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and thereby help advance personalized therapy.

2.
J Vis Exp ; (197)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578260

RESUMO

Single-cell and single-nucleus RNA sequencing have become common laboratory applications due to the wealth of transcriptomic information that they provide. Single nucleus RNA sequencing, particularly, is useful for investigating gene expression in difficult-to-dissociate tissues. Furthermore, this approach is also compatible with frozen (archival) material. Here, we describe a protocol to isolate high-quality single nuclei from frozen mammalian tissues for downstream single nucleus RNA sequencing in a partially-automated manner using commercially available instruments and reagents. Specifically, a robotic dissociator is used to automate and standardize tissue homogenization, followed by an optimized chemical gradient to filter the nuclei. Lastly, we accurately and automatically count the nuclei using an automated fluorescent cell counter. The performance of this protocol is demonstrated on mouse brain, rat kidney, and cynomolgus liver and spleen tissue. This protocol is straightforward, rapid, and readily adaptable to various mammalian tissues without requiring extensive optimization and provides good quality nuclei for downstream single nuclei RNA sequencing.


Assuntos
Núcleo Celular , Perfilação da Expressão Gênica , Ratos , Camundongos , Animais , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Indicadores e Reagentes/metabolismo , Mamíferos/genética
3.
JAMA Cardiol ; 7(5): 521-528, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385050

RESUMO

Importance: Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of atherosclerotic cardiovascular disease, and mouse experiments suggest that CHIP related to Tet2 loss of function in myeloid cells accelerates atherosclerosis via augmented interleukin (IL) 1ß signaling. Objective: To assess whether individuals with CHIP have greater cardiovascular event reduction in response to IL-1ß neutralization in the Canankinumab Anti-inflammatory Thrombosis Outcomes Trial (CANTOS). Design, Setting, and Participants: This randomized clinical trial took place from April 2011 to June 2017 at more than 1000 clinical sites in 39 countries. Targeted deep sequencing of genes previously associated with CHIP in a subset of trial participants using genomic DNA prepared from baseline peripheral blood samples were analyzed. All participants had prior myocardial infarction and elevated high-sensitivity C-reactive protein level above 0.20 mg/dL. Analysis took place between June 2017 and December 2021. Interventions: Canakinumab, an anti-IL-1ß antibody, given at doses of 50, 150, and 300 mg once every 3 months. Main Outcomes and Measures: Major adverse cardiovascular events (MACE). Results: A total of 338 patients (8.6%) were identified in this subset with evidence for clonal hematopoiesis. As expected, the incidence of CHIP increased with age; the mean (SD) age of patients with CHIP was 66.3 (9.2) years and 61.5 (9.6) years in patients without CHIP. Unlike other populations that were not preselected for elevated C-reactive protein, in the CANTOS population variants in TET2 were more common than DNMT3A (119 variants in 103 patients vs 86 variants in 85 patients). Placebo-treated patients with CHIP showed a nonsignificant increase in the rate of MACE compared with patients without CHIP using a Cox proportional hazard model (hazard ratio, 1.32 [95% CI, 0.86-2.04]; P = .21). Exploratory analyses of placebo-treated patients with a somatic variant in either TET2 or DNMT3A (n = 58) showed an equivocal risk for MACE (hazard ratio, 1.65 [95% CI, 0.97-2.80]; P = .06). Patients with CHIP due to somatic variants in TET2 also had reduced risk for MACE while taking canakinumab (hazard ratio, 0.38 [95% CI, 0.15-0.96]) with equivocal difference compared with others (P for interaction = .14). Conclusions and Relevance: These results are consistent with observations of increased risk for cardiovascular events in patients with CHIP and raise the possibility that those with TET2 variants may respond better to canakinumab than those without CHIP. Future studies are required to further substantiate this hypothesis. Trial Registration: ClinicalTrials.gov Identifier: NCT01327846.


Assuntos
Anticorpos Monoclonais Humanizados , Aterosclerose , Hematopoiese Clonal , Dioxigenases , Anticorpos Monoclonais Humanizados/uso terapêutico , Aterosclerose/tratamento farmacológico , Proteína C-Reativa/análise , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Humanos
4.
J Clin Immunol ; 42(5): 1083-1092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35486341

RESUMO

Inborn errors of immunity (IEI) are genetically driven disorders. With the advancement of sequencing technologies, a rapidly increasing number of gene defects has been identified, thereby mirroring the high heterogeneity in immunological and clinical presentations observed in patients. However, for a large majority of patients, no causative single nucleotide variant (SNV) or small indel can be identified using next-generation sequencing. First studies have shown that also copy number variants (CNVs) can cause IEI. Unfortunately, CNVs are not well examined in many routine diagnostic settings and the aim of this study was to assess the number of clinically relevant chromosomal losses and gains in a large cohort. We identified a total of 20 CNVs using whole exome sequencing data of a cohort of 191 patients with a suspected IEI. A definite molecular diagnosis could be made in five patients (2.6%), including pathogenic deletions affecting ICOS, TNFAIP3, and 22q11.2. CNVs of uncertain significance were observed in fifteen patients (7.9%), including deletions of 11q22.1q22.3 and 16p11.2 but also duplications affecting entire or parts of genes previously associated with IEI. Importantly, five patients carrying a CNV of uncertain significance also carried pathogenic or likely pathogenic SNVs (PIK3R1, NFKB1, NLRC4, DOCK2), or SNVs of unknown significance (NFKB2). This cooccurrence of SNVs and CNVs suggests modifying effects in some patients, and functional follow-up is warranted now in order to better understand phenotypic heterogeneity. In summary, the diagnostic yield of IEI can be increased substantially by evaluating CNVs, which allows an improved therapeutic management in those patients.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Doenças do Sistema Imunitário , Estudos de Coortes , Doenças Genéticas Inatas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças do Sistema Imunitário/genética , Sequenciamento do Exoma
5.
Sci Data ; 8(1): 296, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753956

RESUMO

With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.


Assuntos
Sequenciamento do Exoma , Genoma Humano , Neoplasias/genética , Sequenciamento Completo do Genoma , Benchmarking , Linhagem Celular Tumoral , Biologia Computacional , Genômica , Humanos , Medicina de Precisão
6.
Nat Biotechnol ; 39(9): 1141-1150, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504346

RESUMO

Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.


Assuntos
Benchmarking , Sequenciamento do Exoma/normas , Neoplasias/genética , Análise de Sequência de DNA/normas , Sequenciamento Completo do Genoma/normas , Linhagem Celular , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Reprodutibilidade dos Testes
7.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504347

RESUMO

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Assuntos
Benchmarking , Neoplasias da Mama/genética , Análise Mutacional de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento Completo do Genoma/normas , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Células Germinativas , Humanos , Mutação , Padrões de Referência , Reprodutibilidade dos Testes
8.
Genes Chromosomes Cancer ; 59(2): 96-105, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31469468

RESUMO

Tenosynovial giant cell tumors (TGCTs) are characterized by rearrangements of CSF1, thought to drive overexpression of macrophage colony-stimulating factor (CSF1), thereby promoting tumor growth and recruitment of non-neoplastic mononuclear and multinucleated inflammatory cells. While fusions to collagen promoters have been described, the mechanism of CSF1 overexpression has been unclear in a majority of cases. Two cohorts of TGCT were investigated for CSF1 rearrangements using fluorescence in situ hybridization (FISH) and either RNA-seq or DNA-seq with Sanger validation. The study comprised 39 patients, including 13 localized TGCT, 21 diffuse TGCT, and five of unspecified type. CSF1 rearrangements were identified by FISH in 30 cases: 13 translocations, 17 3' deletions. Sequencing confirmed CSF1 breakpoints in 28 cases; in all 28 the breakpoint was found to be downstream of exon 5, replacing or deleting a long 3' UTR containing known miRNA and AU-rich element negative regulatory sequences. We also confirmed the presence of CBL exon 8-9 mutations in six of 21 cases. In conclusion, TGCT in our large cohort were characterized by variable alterations, all of which led to truncation of the 3' end of CSF1, instead of the COL6A3-CSF1 fusions previously reported in some TGCTs. The diversity of fusion partners but consistent integrity of CSF1 functional domains encoded by exons 1-5 support a hypothesis that CSF1 overexpression results from transcription of a truncated form of CSF1 lacking 3' negative regulatory sequences. The presence of CBL mutations affecting the linker and RING finger domain suggests an alternative mechanism for increased CSF1/CSF1R signaling in some cases.


Assuntos
Tumor de Células Gigantes de Bainha Tendinosa/genética , Fator Estimulador de Colônias de Macrófagos/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Estudos de Coortes , Éxons , Feminino , Tumor de Células Gigantes de Bainha Tendinosa/diagnóstico , Tumor de Células Gigantes de Bainha Tendinosa/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Translocação Genética
9.
BMC Genomics ; 18(1): 442, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583074

RESUMO

BACKGROUND: RNA-sequencing (RNA-seq) has emerged as one of the most sensitive tool for gene expression analysis. Among the library preparation methods available, the standard poly(A) + enrichment provides a comprehensive, detailed, and accurate view of polyadenylated RNAs. However, on samples of suboptimal quality ribosomal RNA depletion and exon capture methods have recently been reported as better alternatives. METHODS: We compared for the first time three commercial Illumina library preparation kits (TruSeq Stranded mRNA, TruSeq Ribo-Zero rRNA Removal, and TruSeq RNA Access) as representatives of these three different approaches using well-established human reference RNA samples from the MAQC/SEQC consortium on a wide range of input amounts (from 100 ng down to 1 ng) and degradation levels (intact, degraded, and highly degraded). RESULTS: We assessed the accuracy of the generated expression values by comparison to gold standard TaqMan qPCR measurements and gained unprecedented insight into the limits of applicability in terms of input quantity and sample quality of each protocol. We found that each protocol generates highly reproducible results (R 2 > 0.92) on intact RNA samples down to input amounts of 10 ng. For degraded RNA samples, Ribo-Zero showed clear performance advantages over the other two protocols as it generated more accurate and better reproducible gene expression results even at very low input amounts such as 1 ng and 2 ng. For highly degraded RNA samples, RNA Access performed best generating reliable data down to 5 ng input. CONCLUSIONS: We found that the ribosomal RNA depletion protocol from Illumina works very well at amounts far below recommendation and over a good range of intact and degraded material. We also infer that the exome-capture protocol (RNA Access, Illumina) performs better than other methods on highly degraded and low amount samples.


Assuntos
Análise de Sequência de RNA/métodos , Humanos , Controle de Qualidade , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Taq Polimerase/metabolismo
10.
Am J Hum Genet ; 100(5): 737-750, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457472

RESUMO

Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.


Assuntos
Catepsina B/metabolismo , Elementos Facilitadores Genéticos , Eritema/genética , Duplicação Gênica , Regulação da Expressão Gênica , Ceratose/genética , Dermatopatias Genéticas/genética , Estudos de Casos e Controles , Catepsina B/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Epiderme/metabolismo , Epigenômica , Eritema/epidemiologia , Feminino , Marcadores Genéticos , Humanos , Queratinócitos/metabolismo , Ceratose/epidemiologia , Células MCF-7 , Masculino , Noruega/epidemiologia , Linhagem , Dermatopatias Genéticas/epidemiologia , África do Sul/epidemiologia
11.
Nat Commun ; 8: 14262, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186126

RESUMO

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Assuntos
Biomarcadores Tumorais/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
12.
Front Genet ; 7: 172, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27761138

RESUMO

A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences.

13.
N Engl J Med ; 375(12): 1152-60, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653565

RESUMO

BACKGROUND: KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. METHODS: We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). RESULTS: Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. CONCLUSIONS: KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and others; ClinicalTrials.gov number, NCT01753323 .).


Assuntos
Antimaláricos/administração & dosagem , Imidazóis/administração & dosagem , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Piperazinas/administração & dosagem , Administração Oral , Adulto , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Feminino , Febre , Humanos , Imidazóis/efeitos adversos , Imidazóis/farmacocinética , Masculino , Pessoa de Meia-Idade , Carga Parasitária , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adulto Jovem
14.
BMC Med Genet ; 17(1): 47, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27439461

RESUMO

BACKGROUND: Macular corneal dystrophy (MCD) is a rare autosomal recessive disorder that is characterized by progressive corneal opacity that starts in early childhood and ultimately progresses to blindness in early adulthood. The aim of this study was to identify the cause of MCD in a black South African family with two affected sisters. METHODS: A multigenerational South African Sotho-speaking family with type I MCD was studied using whole exome sequencing. Variant filtering to identify the MCD-causal mutation included the disease inheritance pattern, variant minor allele frequency and potential functional impact. RESULTS: Ophthalmologic evaluation of the cases revealed a typical MCD phenotype and none of the other family members were affected. An average of 127 713 variants per individual was identified following exome sequencing and approximately 1.2 % were not present in any of the investigated public databases. Variant filtering identified a homozygous E71Q mutation in CHST6, a known MCD-causing gene encoding corneal N-acetyl glucosamine-6-O-sulfotransferase. This E71Q mutation results in a non-conservative amino acid change in a highly conserved functional domain of the human CHST6 that is essential for enzyme activity. CONCLUSION: We identified a novel E71Q mutation in CHST6 as the MCD-causal mutation in a black South African family with type I MCD. This is the first description of MCD in a black Sub-Saharan African family and therefore contributes valuable insights into the genetic aetiology of this disease, while improving genetic counselling for this and potentially other MCD families.


Assuntos
Distrofias Hereditárias da Córnea/genética , Mutação , Sulfotransferases/genética , Adulto , Córnea/patologia , Distrofias Hereditárias da Córnea/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , África do Sul , Carboidrato Sulfotransferases
15.
Nat Genet ; 47(9): 1020-1029, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214592

RESUMO

TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


Assuntos
Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cocultura , Estudos de Coortes , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Estudos de Associação Genética , Genômica , Humanos , Cadeias Leves Substitutas da Imunoglobulina/genética , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Deleção de Sequência , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 9(10): e111006, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347188

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND RESULTS: In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis. CONCLUSIONS: We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J on the one hand and PWD/PhJ on the other.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Camundongos , Hepatopatia Gordurosa não Alcoólica , Fenótipo , Proteômica , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Índice de Gravidade de Doença , Transdução de Sinais
17.
BMC Genomics ; 15: 675, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25113896

RESUMO

BACKGROUND: Gene expression analysis by RNA sequencing is now widely used in a number of applications surveying the whole transcriptomes of cells and tissues. The recent introduction of ribosomal RNA depletion protocols, such as RiboZero, has extended the view of the polyadenylated transcriptome to the poly(A)- fraction of the RNA. However, substantial amounts of intronic transcriptional activity has been reported in RiboZero protocols, raising issues regarding their potential nuclear origin and the impact on the actual sequence depth in exonic regions. RESULTS: Using HEK293 human cells as source material, we assessed here the impact of the two commonly used RNA extraction methods and of the library construction protocols (rRNA depletion versus mRNA) on 1) the relative abundance of intronic reads and 2) on the estimation of gene expression values. We benchmarked the rRNA depletion-based sequencing with a specific analysis of the cytoplasmic and nuclear transcriptome fractions, suggesting that the large majority of the intronic reads correspond to unprocessed nuclear transcripts rather than to independent transcriptional units. We show that Qiagen or TRIzol extraction methods retain differentially nuclear RNA species, and that consequently, rRNA depletion-based RNA sequencing protocols are particularly sensitive to the extraction methods. CONCLUSIONS: We could show that the combination of Trizol-based RNA extraction with rRNA depletion sequencing protocols led to the largest fraction of intronic reads, after the sequencing of the nuclear transcriptome. We discuss here the impact of the various strategies on gene expression and alternative splicing estimation measures. Further, we propose guidelines and a double selection strategy for minimizing the expression biases, without loss of information.


Assuntos
RNA Mensageiro/isolamento & purificação , Perfilação da Expressão Gênica , Biblioteca Gênica , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/isolamento & purificação , RNA Mensageiro/genética , Análise de Sequência de RNA , Transcriptoma
18.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24847876

RESUMO

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Meduloblastoma/genética , Análise de Sequência de DNA/métodos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Feminino , Genoma/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patologia , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Sci Signal ; 7(325): rs3, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825921

RESUMO

The DNA damage response (DDR) is a vast signaling network that is robustly activated by DNA double-strand breaks, the critical lesion induced by ionizing radiation (IR). Although much of this response operates at the protein level, a critical component of the network sustains many DDR branches by modulating the cellular transcriptome. Using deep sequencing, we delineated three layers in the transcriptional response to IR in human breast cancer cells: changes in the expression of genes encoding proteins or long noncoding RNAs, alterations in genomic binding by key transcription factors, and dynamics of epigenetic markers of active promoters and enhancers. We identified protein-coding and previously unidentified noncoding genes that were responsive to IR, and demonstrated that IR-induced transcriptional dynamics was mediated largely by the transcription factors p53 and nuclear factor κB (NF-κB) and was primarily dependent on the kinase ataxia-telangiectasia mutated (ATM). The resultant data set provides a rich resource for understanding a basic, underlying component of a critical cellular stress response.


Assuntos
Epigênese Genética/efeitos da radiação , Redes Reguladoras de Genes/efeitos da radiação , Radiação Ionizante , Transcriptoma/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Cell ; 155(3): 567-81, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24139898

RESUMO

Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.


Assuntos
Cromossomos Humanos X , Mutação , Neoplasias/genética , Inativação do Cromossomo X , Adulto , Idoso , Replicação do DNA , Feminino , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Polimorfismo de Nucleotídeo Único , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...