Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1382787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659592

RESUMO

Background: Prostate cancer and non-small cell lung cancer (NSCLC) present significant challenges in the development of effective therapeutic strategies. Hormone therapies for prostate cancer target androgen receptors and prostate-specific antigen markers. However, treatment options for prostatic small-cell neuroendocrine carcinoma are limited. NSCLC, on the other hand, is primarily treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors but exhibits resistance. This study explored a novel therapeutic approach by investigating the potential anticancer properties of vitekwangin B, a natural compound derived from Vitex trifolia. Methods: Vitekwangin B was chromatographically isolated from the fruits of V. trifolia. ANO1 protein levels in prostate cancer and NSCLC cells were verified and evaluated again after vitekwangin B treatment. Results: Vitekwangin B did not inhibit anoctamin1 (ANO1) channel function but significantly reduced ANO1 protein levels. These results demonstrate that vitekwangin B effectively inhibited cancer cell viability and induced apoptosis in prostate cancer and NSCLC cells. Moreover, it exhibited minimal toxicity to liver cells and did not affect hERG channel activity, making it a promising candidate for further development as an anticancer drug. Conclusion: Vitekwangin B may offer a new direction for cancer therapy by targeting ANO1 protein, potentially improving treatment outcomes in patients with prostate cancer and NSCLC. Further research is needed to explore its full potential and overcome existing drug resistance challenges.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36225186

RESUMO

Convolvulus pluricaulis (CP), a Medhya Rasayana (nootropic) herb, is a major ingredient in Ayurvedic and Traditional Chinese formulae indicated for neurological conditions, namely, dementia, anxiety, depression, insanity, and epilepsy. Experimental evidence suggests various neuroactive potentials of CP such as memory-enhancing, neuroprotective, and antiepileptic. However, precise mechanisms underlying the neuropharmacological effects of CP remain unclear. The study, therefore, aimed at deciphering the molecular basis of neuroprotective effects of CP phytochemicals against the pathology of dementia disorders such as Alzheimer's (AD) and Parkinson's (PD) disease. The study exploited bioinformatics tools and resources, such as Cytoscape, DAVID (Database for annotation, visualization, and integrated discovery), NetworkAnalyst, and KEGG (Kyoto Encyclopedia of Genes and Genomes) database to investigate the interaction between CP compounds and molecular targets. An in silico analysis was also employed to screen druglike compounds and validate some selective interactions. ADME (absorption, distribution, metabolism, and excretion) analysis predicted a total of five druglike phytochemicals from CP constituents, namely, scopoletin, 4-hydroxycinnamic acid, kaempferol, quercetin, and ayapanin. In network analysis, these compounds were found to interact with some molecular targets such as prostaglandin G/H synthase 1 and 2 (PTGS1 and PTGS2), endothelial nitric oxide synthase (NOS3), insulin receptor (INSR), heme oxygenase 1 (HMOX1), acetylcholinesterase (ACHE), peroxisome proliferator-activated receptor-gamma (PPARG), and monoamine oxidase A and B (MAOA and MAOB) that are associated with neuronal growth, survival, and activity. Docking simulation further confirmed interaction patterns and binding affinity of selected CP compounds with those molecular targets. Notably, scopoletin showed the highest binding affinity with PTGS1, NOS3, PPARG, ACHE, MAOA, MAOB, and TRKB, quercetin with PTGS2, 4-hydroxycinnamic acid with INSR, and ayapanin with HMOX1. The findings indicate that scopoletin, kaempferol, quercetin, 4-hydroxycinnamic acid, and ayapanin are the main active constituents of CP which might account for its memory enhancement and neuroprotective effects and that target proteins such as PTGS1, PTGS2, NOS3, PPARG, ACHE, MAOA, MAOB, INSR, HMOX1, and TRKB could be druggable targets against dementia.

3.
Curr Pharm Des ; 28(19): 1561-1580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652403

RESUMO

Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically a Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment has been well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.


Assuntos
Anticarcinógenos , Neoplasias da Próstata , Dieta , Humanos , Masculino , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle
4.
Phytother Res ; 36(6): 2524-2541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35443091

RESUMO

Withania somnifera (WS), is known for its remarkable contribution in herbal medicine and Ayurveda, which is therapeutically applied to improve memory and anxiety in patients. However, the pharmacological details of this plant on memory boosting yet remained undefined. This study provides mechanistic insights on the effect of ethanol solution extract of the whole plant of WS (WSEE) on neuritogenesis by combining in vitro and in silico network pharmacology approaches. WSEE promoted significant neuronal growth through early differentiation, axodendritic arborization, and synaptogenesis on primary hippocampal neurons. The network pharmacological study confirmed that the neuritogenic activity is potentially mediated by modulating the neurotrophin signaling pathway, where NRTK1 (TrkA) was revealed as the primary target of WS secondary metabolites. This neurotrophic activity of WSEE was significantly stifled by the presence of TrkA inhibitor, which further confirms the TrkA-dependent activity of WSEE. In addition, a molecular docking study suggested steroidal lactones present in the WS might act as nerve growth factor (NGF)-mimetics, activating TrkA by binding to the NGF-binding domain. As a whole, the findings of the study suggest a significant role of WSEE on neuritogenesis and its potential to function as a therapeutic agent and in drug designing for the prevention and treatment of memory-related neurological disorders.


Assuntos
Withania , Humanos , Transtornos da Memória/tratamento farmacológico , Simulação de Acoplamento Molecular , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Farmacologia em Rede , Neurônios , Extratos Vegetais/uso terapêutico , Withania/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...