Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38715685

RESUMO

Many different herbal extracts have historically been utilized to treat microbe-induced infections, injuries, cancer, thrombosis, and arthritis. The purpose of this study was to determine the antibacterial, cytotoxic, in vitro thrombolytic, and in vitro antiarthritic properties of ethanolic extracts of stem and seed of Bari orchid 1 (BO) plant. This orchid plant was developed by the Bangladesh Agriculture Research Institute (BARI) in Gazipur. Fourteen microbes were employed in the antimicrobial investigation, and samples of orchids were compared to ciprofloxacin as a reference. The BO/seed extract was found to possess more antibacterial activity. The lethality test of brine shrimps was used to assess the LC50 values. The BO/stem extract exhibited a higher cytotoxicity potential, in comparison to the BO/seed extract. Two concentrations (1000 and 100 ppm) and two incubation times (24 hours and 1.5 hours) were used to assess the thrombolytic activity of the extracts. Regarding the thrombolytic effect, the BO/stem extract has demonstrated greater promise. Furthermore, the herbal extract's antiarthritic activity was investigated at four different concentrations, and the results were evaluated in comparison with those of diclofenac sodium. When comparing BO/stem extract to other extracts, the greatest values for protein denaturation were obtained.

2.
Biology (Basel) ; 13(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666872

RESUMO

The widespread occurrence of heavy metals in aquatic environments, resulting in their bioaccumulation within aquatic organisms like fish, presents potential hazards to human health. This study investigates the concentrations of five toxic heavy metals (Pb, Hg, Zn, Cu, and Cr) and their potential health implications in two economically important fish species (Otolithoides pama and Labeo bata) from a subtropical estuarine wetland system (Feni estuary, Bangladesh). Muscle and gill samples from 36 individual fish were analyzed using energy dispersive X-ray fluorescence (EDXRF). The results revealed that the average quantities of heavy metals in both fishes' muscle followed the declining order of Zn (109.41-119.93 mg/kg) > Cu (45.52-65.43 mg/kg) > Hg (1.25-1.39 mg/kg) > Pb (0.68-1.12 mg/kg) > Cr (0.31-5.82 mg/kg). Furthermore, Zn was found to be present in the highest concentration within the gills of both species. While the levels of Cu, Zn, and Cr in the fish muscle were deemed acceptable for human consumption, the concentrations of Pb and Hg exceeded the permissible limits (>0.5 mg/kg) for human consumption. Different risk indices, including estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic or target risk (TR), revealed mixed and varying degrees of potential threat to human health. According to the EDI values, individuals consuming these fish may face health risks as the levels of Zn, Cu, and Cr in the muscle are either very close to or exceed the maximum tolerable daily intake (MTDI) threshold. Nevertheless, the THQ and HI values suggested that both species remained suitable for human consumption, as indicated by THQ (<1) and HI (<1) values. Carcinogenic risk values for Pb, Cr, and Zn all remained within permissible limits, with TR values falling below the range of (10-6 to 10-4), except for Zn, which exceeded it (>10-4). The correlation matrix and multivariate principal component analysis (PCA) findings revealed that Pb and Cr primarily stemmed from natural geological backgrounds, whereas Zn, Cu, and Hg were attributed to human-induced sources such as agricultural chemicals, silver nanoparticles, antimicrobial substances, and metallic plating. Given the significance of fish as a crucial and nutritious element of a balanced diet, it is essential to maintain consistent monitoring and regulation of the levels and origins of heavy metals found within it.

3.
Saudi J Biol Sci ; 30(11): 103811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920798

RESUMO

Liver injury is a prevalent pathological process that can give rise to conditions such as fatty liver, cirrhosis, fibrosis, and even cancer. It has been observed that plants and natural products possess significant protective effects against liver injury. Current study was performed to investigate the efficacy of almonds shell against carbon tetrachloride (CCl4) induced hepatotoxicity in rat model. As almonds shell contain a large variety of phenolic and flavonoid compounds, which are largely associated with antioxidant and hepatoprotective properties. For this purpose, screening of small-scale library of twenty plant extracts was performed for evaluation of antioxidant potential by DPPH assay. The data revealed that almonds shell extract (ASEE) exhibited potent antioxidant activity. This potent extract was further evaluated for hepatoprotective activity in in vivo rat model on 30 rats, divided into 6 groups of 5 rats each. On 29th day all rats were sacrificed and blood serum was collected for further analysis. Liver tissues were also preserved in formalin for histopathology. The results demonstrated that ASEE displayed a protective effect on liver function tests (LFT), renal function tests (RFT), and lipid biomarkers in comparison to the CCl4 group. The histological data also unveiled a substantial safeguarding impact on liver damage, characterized by a reduction in apoptosis, diminished liver hemorrhage, and decreased accumulation of cellular debris. The data indicates that ethanolic extract from almond shells possesses hepatoprotective potential, suggesting its viability as an alternative source for hepatoprotective drug development after pre-clinical research.

4.
Biology (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37626958

RESUMO

Potentially toxic elements (PTEs) such as Hg, As, and Pb have become concentrated in the aquatic ecosystem as a result of increased human activities. However, these substances frequently have synergistic or antagonistic effects on the human body or other animals. As a result, there are concerns world-wide that commercially available food products, especially fish, may be contaminated with hazardous elements. In this study, samples of four selected fishes, Gutum (Lepidocephalichthys guntea), Baim (Macrognathus pancalus), Baila (Glossogobius giuris), Meni (Nandus nandus) were analyzed from one of the largest freshwater wetlands (designed as a Ramsar Site) in South Asia to evaluate PTEs contamination status and human health risk assessment. The result demonstrated that the degree of contamination for six PTEs decreased in the following sequences for fish: Fe > Zn > Cu > Pb > As > Hg. The edible part of G. giuris had the maximum value for Hg (0.42 µg/g dw), while N. nandus predominantly accumulated As (<0.41 µg/g dw). The estimated daily intake (EDI) values ranged from 0.003 to 1.75, which was much lower than the recommended values. The hazard index (HI), THQ, total target hazard quotient (TTHQ) scores through consuming fish followed the decreasing order of Fe > Hg > Cu > Zn > Pb. The values for each index were less than 1, indicating that there were no substantial health risks for the consumers. The carcinogenic risks (CR) derived from the intake of Pb ranged from 4.92 × 10-8 to 4.14 × 10-8 for males and 5.45 × 10-8 to 4.59 × 10-8 for females, which also did not exceed the standard limit (1.00 × 10-6). This study demonstrated that, under the existing consumption rate, there was no potential health harm to consumers from consuming the studied fishes. This study offers a chance to regularly check PTEs in this environment, reducing the contamination of heavy metals.

5.
Mar Pollut Bull ; 194(Pt B): 115337, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516095

RESUMO

Functioning of coastal wetland habitats is essential for the ecosystem integrity and sustainability of coastal development that enables human progress along transitional waterways. However, these habitats are continuously being affected by a variety of pollutants including metallic elements. In this study, seasonal variation, pollution status and ecological risks of heavy metals (Cr, Mn, Co, Ni, As, Cu, Zn and Pb) in surface sediment of the several types of coastal wetlands (estuaries, mudflats, sandy beaches, mangroves, and saltmarshes) were detected by using X-ray fluorescence (EDXRF) spectrometry. The results showed that the mean concentration level of metals in the surficial sediment samples followed the order of Cu (84.06 ± 8.60 µg/g) > Zn (51.00 ± 8.97 µg/g) > Mn (38.25 ± 11.34 µg/g) > Cr (3.52 ± 0.91 µg/g) > Pb (0.27 ± 0.13 µg/g) > Co (0.24 ± 0.13 µg/g) > As (0.21 ± 0.12 µg/g) > Ni (0.16 ± 0.08 µg/g). In comparison to the pre-monsoon period, the post-monsoon season had higher concentrations of heavy metals while the overall accumulation level of metals in the wetlands exhibited a pattern of estuarine wetland (28.47 ± 31.35 µg/g) > mangrove (22.23 ± 30.79 µg/g) > mudflat (21.79 ± 29.71 µg/g) > sandy beach (21.47 ± 28.15 µg/g) > saltmarsh (21.28 ± 30.02 µg/g). Although, the pollution assessment indices e.g., contamination factor (CF), degree of contamination (CD), geoaccumulation index (Igeo) and pollution load index (PLI) showed minimal levels of contamination in the studied sites, enrichment factor (EF) suggested greater enrichment of the metals in the pre-monsoon season but with the lowest ecological risk (RI < 40) in both seasons. Cluster analysis, principal component analysis (PCA), and Pearson's correlation were performed to determine the sources of heavy metals in collected samples which specified that Pb, As, Co and Ni predominantly came from natural sources whereas Cu, Mn, Zn and Cr emerged from anthropogenic sources such as industrial effluents, domestic wastewater, fertilizer or pesticide consumption on farmland along the riverbank, vessel emissions, and the confluence of tributary rivers.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Estações do Ano , Áreas Alagadas , Ecossistema , Baías , Chumbo/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
6.
Biology (Basel) ; 11(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552288

RESUMO

Trace-element or heavy-metal pollution has emerged as a serious concern in terms of both environmental and human health issues. This study measured six trace and toxic heavy metals (Pb, Cd, Cr, Ni, Cu, and Zn) in four marine fish and shrimp species to assess their accumulation levels and evaluate the risks to human health. The mean concentrations of the metals in fish and shrimp species (Labeo bata, Sillaginopsis panijus, Platycepalus fuscus, and Penaeus monodon) followed the decreasing order of Zn (40.8 ± 9.7 µg/g) > Cu (17.8 ± 7.1 µg/g) > Pb (6.2 ± 1.8 µg/g) > Ni (0.4 ± 0.3 µg/g) > Cd (0.06 ± 0.02 µg/g > Cr (below detection level). Among the metals, only Pb in finfish and Pb, Cu, and Zn in shrimp samples exceeded the national recommended limits, representing possible risks to consumers. The mean metal concentrations in the studied fish/shrimp species followed the descending order of P. monodon > S. panijus > P. fuscus > L. bata, which implies that bottom dwellers and omnivores had higher levels of metals. However, the estimated daily intake (EDI) concentrations of Zn and Cu for the studied species were lower than the RDA (Recommended Daily Allowance). In addition, the Target Hazard Quotient (THQ) and hazard index (HI or TTHQ) values for all species were < 1, indicating that consumers might not experience carcinogenic health risks. A strong significant (p < 0.05) correlation between Cu and Pb (r = 0.623) and Zn and Cu (r = −0.871) indicated they were from the same source of origin. Cluster analysis (CA) and principal component analysis (PCA) demonstrated possible anthropogenic sources of toxic metals in the study area, specifically industrial wastes and agricultural chemicals.

7.
Toxics ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287844

RESUMO

The present study aimed to determine the degree of changes in the histological architecture of the liver, gills, kidneys, and muscles of fish Oreochromis niloticus collected from different polluted river sites. Fish samples collected from the Faisalabad Fish Hatchery and upstream of Chakbandi drain acted as a control. Necrosis, hemorrhage, and epithelial hyperplasia were observed in the gills of fish inhabiting the river downstream of the Chakbandi drain entrance. Liver tissues were found to be affected by vacuolated cytoplasm, bile duct proliferation, melanomacrophages, and necrosis. In kidney tissues, shrinkage of the renal cortex, necrosis, and destructive renal tubules were observed. Histopathology of muscles indicates the presence of hypertrophy and swollen myofibers. In contrast, upstream specimens of fish exhibited mild tissue alterations. Histopathology of gills tissue showed vacuolization. Liver tissues indicated the presence of hypertrophy and more frequent Kupffer cells than usual. The vacuolation was also observed in kidney tissues. Muscle tissues expressed splitting of muscle fibres and degeneration in muscle bundles. However, sections of tissues collected from farmed fish have normal morphology and no anomalies. The histopathological assessment indicated various cellular, biochemical, and histological changes in response to the contamination in the vicinity of the fish.

8.
Mar Pollut Bull ; 185(Pt A): 114246, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279725

RESUMO

Sediment samples of different wetland types (saltmarsh, mangrove, tidal pool, mudflat and sandflat) from an urbanized estuary were analyzed to evaluate the contamination level and ecological risks of five heavy metals (Pb, Fe, Zn, Ni and Cr). The findings showed that the mean concentration (mg/kg) of heavy metals followed the order of Fe > Zn > Ni > Pb > Cr, while Pb and Fe concentrations exceeded the recommended guidelines. Heavy metals levels were highest in saltmarsh and mudflats. Contamination assessment indices e.g., contamination factor (CF), degree of contamination (CD), enrichment factor (EF), and geo-accumulation index (Igeo) revealed that the studied wetlands had low to moderate levels of pollution, meaning these sites receive medium levels of anthropogenic contamination compared with background values. For some of the studied metals, such as Pb, Zn, Fe, and Ni, the EF value was >1 in certain types of wetland, indicating anthropogenic sources, while Cr was <1 indicating natural sources. The pollution load index (PLI) value was determined to be <1, indicating perfection of soil, and was in the following order: mudflat> saltmarsh> tidal pool> mangrove > sandflat. The ecological risk (RI) value was the highest for saltmarsh and the lowest for sandflats. However, the RI value for Cr, Zn, Ni, and Pb was <30 suggesting that these metals pose a low risk in the local ecosystem. Cluster analysis (CA), principal component analysis (PCA), and Pearson's correlation specified that anthropogenic sources of metals.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Ecossistema , Sedimentos Geológicos , Monitoramento Ambiental , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Medição de Risco
9.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144843

RESUMO

Targeting the serine biosynthesis pathway enzymes has turned up as a novel strategy for anti-cancer therapeutics. 3- Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme that catalyzes the conversion of 3-Phosphoglyceric acid (3-PG) into 3-Phosphohydroxy pyruvate (3-PPyr) in the first step of serine synthesis pathway and perform a critical role in cancer progression. PHGDH has been reported to be overexpressed in different types of cancers and emerged as a novel target for cancer therapeutics. During this study, virtual screening tools were used for the identification of inhibitors of PHGDH. A library of phenolic compounds was docked against two binding sites of PHGDH using Molegro Virtual Docker (MVD) software. Out of 169 virtually tested compounds, Salvianolic acid C and Schizotenuin F possess good binding potential to co-factor binding site of PHGDH while Salvianolic acid I and Chicoric acid were identified as the best binding compounds toward the substrate binding site of PHGDH. The top selected compounds were evaluated for different physiochemical and ADMET properties, the obtained results showed that none of these hit compounds violated the Pfizer Rule and they possess acceptable ADMET profiles. Further, a commercially available hit compound, Chicoric acid, was evaluated for its anti-cancer potential against PHGDH-expressing gastric cancer cell lines (MGC-803 and SGC-7901) as well as cell lines with low expression of PHGDH (MCF-7 and MDA-MB2-31), which demonstrated that Chicoric acid possesses selective cytotoxicity toward PHGDH expressing cancer cell lines. Thus, this study has unveiled the potential of phenolic compounds, which could serve as novel candidates for the development of PHGDH inhibitors as anti-cancer agents.


Assuntos
Neoplasias , Fosfoglicerato Desidrogenase , Ácidos Cafeicos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Piruvatos , Serina , Succinatos
10.
Saudi J Biol Sci ; 29(5): 3408-3413, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844414

RESUMO

Major objective of this study was to explore the protective effect of the methanolic extract of Chenopodium album against carbon tetrachloride induced hepatotoxicity in rats. Chenopodium album has locally been used for multiple medicinal proposes. Methanolic extract of Chenopodium album (whole plant) was prepared with Soxhlet extractor and rotatory evaporator. Antioxidant activity of Chenopodium album was determined by DPPH free radical scavenging assay. Thirty Wister (albino) rats (150-200 g) were divided into six groups for the evaluation of hepatoprotective potential of different concentrations of Chenopodium album against carbon tetrachloride (1:1 CCl4: Olive oil) under the controlled laboratory conditions. Group-I rats were administrated with olive oil (Normal control), Group-II with CCl4 only, Group-III with Silymarin (positive control), Group-IV with Chenopodium album (100 mg/kg), Group-V with Chenopodium album (200 mg/kg) and Group-VI rats with Chenopodium album (300 mg/kg) for the period of 28 days. Serum was taken to determine the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, cholesterol, triglyceride, creatinine and urea in the blood. Formalin stored tissues were examined for histopathological analysis. DPPH assay showed that Chenopodium album has the potential for reduction of oxidative stress. Chenopodium album minimized the levels of ALT (70 ± 8.68 U/L, 68.75 ± 8.38 U/L & 73.5 ± 10.28 U/L), AST (219.5 ± 19.16 U/L, 140.75 ± 13.35 U/L & 221.25 ± 13.33 U/L) and ALP (289.5 ± 28.21 U/L, 258 ± 11.12 U/L & 248.25 ± 4.03 U/L) at different concentrations (100 mg/kg, 200 mg/kg, 300 mg/kg respectively). Chenopodium album enhanced triglyceride level (64.75 ± 12.66 mg/dl at 200 mg/kg) as compared to CCl4 treated group (33.25 ± 1.26 mg/dl). Carbon tetrachloride elevated urea level (43.25 ± 6.6) was decreased by high dose of Chenopodium album (18 ± 8.17). Moreover, Chenopodium album also improved WBC level (9.69 × 103 /Cu.mr & 10.59 × 103 /Cu.mr at low and medium doses respectively), RBCs level (6.97 × 103 /Cu.mr) and hemoglobin level (13.95 G/dL, 13.467 G/dL & 14.05 G/dL at low, medium and high doses). In vivo study of Chenopodium album methanolic extract demonstrates the potential for protection of liver and after pre-clinical studies the plant can be used as a safe alternative of commercially available hepatoprotective medicines.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35661820

RESUMO

Silver nanoparticles (AgNPs) in the aquatic environment affect ecological repercussions and have fatal impacts on aquatic animals. The current study examined and correlated the toxicity of silver nitrate (AgNO3) and silver nanoparticles (AgNPs) to the Mozambique tilapia, Oreochromis mossambicus. The comparative toxicity studies were done by exposing O. mossambicus to various doses of AgNO3 and AgNPs (0, 25, 50, 75, and 100 µg/L) over a 7-day subacute exposure period. AAS analysis was used to detect Ag accumulation, while the histological examination established gill tissue damage. Oxidative stress affects lipid peroxidation (LPO) and protein carbonyl activity (PCA) in the gill tissue. Antioxidant parameters such as glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase activity (CAT), and non-enzymatic antioxidants such as metallothionein (MT) and reduced glutathione. The serum in the blood was used to determine non-specific immunological characteristics such as lysozyme (LYZ), myeloperoxidase (MPO), and respiratory burst activity (RBA). The neurotoxic impact of acetylcholine esterase activity (AChE) was investigated in brain tissues. The findings demonstrated that larger concentrations of AgNO3 than AgNPs improved enzymatic antioxidant activities in the gill tissue. Histological examination of fish gills demonstrated that both AgNPs and AgNO3 induced telangiectasia and epithelial cell hyperplasia. By increasing the concentration of AgNPs and AgNO3, the present research demonstrated that silver accumulation leads to inefficient oxidative stress and altered enzymatic and non-enzymatic parameters, leading to cellular damage.


Assuntos
Nanopartículas Metálicas , Tilápia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Corantes , Água Doce , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Prata/metabolismo , Prata/toxicidade , Nitrato de Prata/toxicidade
12.
Toxics ; 10(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35448436

RESUMO

Shrimp is one of the major export products in South Asian countries and also an eminent source of nutrition for humans. Hence, any negative effect of this industry may affect not only the country's economy but also human health. Therefore, in this study, we aimed to assess heavy metal contamination and associated human health risks in cultured shrimp (Penaeus monodon) and aquaculture sludge collected from three shrimp farms of the Cox's Bazar district, Bangladesh. The results showed that among the eight metals studied, Pb (17.75 ± 1.5 mg/kg) and Cu (9.43 ± 2.8 mg/kg) levels in all shrimp samples were higher than the recommended limit, whereas the concentrations of Cd (0.09 ± 0.03 mg/kg), Mn (4.83 ± 2.2 mg/kg), As (0.04 ± 0.02 mg/kg), Hg (0.02 ± 0.006 mg/kg), Zn (18.89 ± 2.9 mg/kg) and Cr (0.69 ± 0.6 mg/kg) were within the permissible level. The concentrations of Mn (1043.37 ± 59.8 mg/kg), Cr (30.38 ± 2.1 mg/kg), Zn (74.72 ± 1.13 mg/kg) and Cu (31.14 ± 1.4 mg/kg) in the sludge of all farms were higher than the recommended limit, whereas the concentrations of Pb (20.23 ± 1.9 mg/kg), Cd (0.09 ± 0.2 mg/kg), As (0.44 ± 0.34 mg/kg) and Hg (0.08 ± 0.02 mg/kg) in all sludge samples were lower than the threshold limits. However, the estimated daily intake (EDI), targeted hazard quotient (THQ) and hazard index (HI) assessed for potential human health risk implications suggested that Pb and Cr may pose non-carcinogenic health effects, although carcinogenic risks (CR) values were acceptable for consumers. However, the pollution load index (PLI) of the studied area was below 1, which indicates low deterioration of the area. Geoaccumulation index (Igeo) and contamination factor (CF) analyses revealed that study area is unpolluted and sludge is enriched with metals in the following order: Mn > Zn > Cu > Cr > Cd > Hg > Pb > As.

13.
Cureus ; 13(1): e12417, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33542866

RESUMO

The prevalence of obesity among women of reproductive age is growing significantly over the last years. Being obese or having a high body mass index (BMI) contributes to many diseases and pregnancy complications. This is concerning as an obese woman is at increased risk for developing several complications during pregnancy and is at increased risk for pregnancy loss, stillbirth, and metabolic disorders of a live-born child in his future. The pregnant woman's body mass index has to be monitored well during the whole pregnancy, and their diet should also be monitored to avoid future complications. Better results can be achieved if every woman would watch their weight before being pregnant for better outcomes in their future pregnancies. This review article aimed to determine the relationship between being obese or having a high BMI and pregnancy loss. Additionally, we tried to find the mechanism that is involved in pregnancy loss in obese women.

14.
Metabol Open ; 8: 100061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145489

RESUMO

This study was carried out to evaluate the nutrient composition and functional properties of dried Moringa oleifera leaves collected from two different ecological zones in Bangladesh, Joypurhat and Mymensingh. The proximate analysis revealed that M. oleifera leaves were rich in protein content, ranging from (22.99-29.36%), and low in fat, from (4.03-9.51%), fiber, from (6.00-9.60%), and ash, from (8.05-10.38%). The vitamin C content of fresh M. oleifera leaves ranged from (187.96-278.50 mg/100 g), Ca ranged from (1.322-2.645%), P ranged from (0.152-0.304 g/100 g), and K ranged from (1.317-2.025 g/100 g). The functional properties included WAC (158.00-415.00%), FC (28.30-117.65 mL/l) and FS (333.33-1000 mL/l). Together, these findings indicate that M. oleifera leaves are rich in vital phytonutrients, suggesting a promising balance of food ingredients for human and animal diets.

15.
RSC Adv ; 10(11): 6213-6222, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35496010

RESUMO

A combination of strong load-bearing capacity and high swelling degree is desired in hydrogels for many applications including drug delivery, tissue engineering, and biomedical engineering. However, a compromising relationship exists between these two most important characteristics of hydrogels. Improving both of these important properties simultaneously in a single hydrogel material is still beyond the satisfactory limit. Herein, we report a novel approach to address this problem by introducing a silica-based bi-functional 3D crosslinker. Our bi-functional silica nanoparticles (BF-Si NPs) possess amine groups that are able to offer pseudo-crosslinking effects induced by inter-cohesive bonding, and acrylate groups that can form conventional covalent crosslinking in the same hydrogel. We fabricated polyacrylic acid (PAc-Si) and polyacrylamide (PAm-Si) hydrogels using our BF-Si NPs via free radical polymerization to demonstrate this concept. Incorporation of the BF-Si crosslinkers into the hydrogels has resulted in a large enhancement in the mechanical properties compared to conventional hydrogel crosslinked with N,N'-methylene bisacrylamide (MBA). For instance, tensile strength and the toughness increased by more than 6 times and 10 times, respectively, upon replacing MBA with BF-Si in polyacrylamide hydrogel. Moreover, the hydrogels crosslinked with BF-Si exhibited a remarkably elevated level of swelling capacity in the aqueous medium. Our facile yet smart strategy of employing the 3D bi-functional crosslinker for combining high swelling degree and strong mechanical properties in the same hydrogels can be extended to the fabrication of many similar acrylate or vinyl polymer hydrogels.

16.
Biomolecules ; 9(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207942

RESUMO

This research work was carried out to determine the effects of water contamination on the fatty acid (FA) profile of periphyton, zoobenthos, two Chinese carps and a common carp (Hypophthalmichthys molitrix, Ctenopharygodon idella and Cyprinus carpio), captured from highly polluted (HP), less polluted (LP), and non-polluted (NP) sites of the Indus river. We found that the concentration of heavy metals in the river water from the polluted locations exceeded the permissible limits suggested by the World Health Organization (WHO) and the US Environmental Protection Agency (EPA). Fatty acid profiles in periphyton, zoobenthos, H. molitrix, C. idella, and C. carpio in the food web of river ecosystems with different pollution levels were assessed. Lauric acid and arachidic acids were not detected in the biomass of periphyton and zoobenthos from HP and LP sites compared to NP sites. Alpha-linolenic acid (ALA), eicosadienoic acid and docosapentaenoic acid were not recorded in the biomass samples of periphyton and zoobenthos in both HP and LP sites. Caprylic acid, lauric acid, and arachidic acid were not found in H. molitrix, C. idella, and C. carpio captured from HP. In this study, 6 and 9 omega series FAs were identified in the muscle samples of H. molitrix, C. idella and C. carpio captured from HP and LP sites compared to NP sites, respectively. Less polyunsaturated fatty acids were observed in the muscle samples of H. molitrix, C. idella, and C. carpio collected from HP than from LP. The heavy metals showed significant negative correlations with the total FAs in periphyton, zoobenthos, and fish samples.


Assuntos
Dinoflagellida/metabolismo , Ácidos Graxos/metabolismo , Peixes/metabolismo , Cadeia Alimentar , Água Doce , Microalgas/metabolismo , Poluição da Água , Animais , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/fisiologia , Peixes/fisiologia , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Estresse Fisiológico/efeitos dos fármacos
17.
Pak J Pharm Sci ; 32(6(Supplementary)): 2843-2848, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32024623

RESUMO

Eriocalyxin B (EriB), a potent ent-kaurene extracted from Isodon eriocalyx, has turned up as novel anti-cancer agent during recent years against a range of cancer types. TNBC (Triple negative breast cancer) is highly aggressive breast cancer, which is resistant towards current therapeutics due to absence of drug targets. Here, we have probed the molecular mechanism of EriB-induced apoptosis in TNBC (MDA-MB231) cells to check whether its anticancer activity is mediated by modulation of STAT3 and NF-Ï°B. EriB induced apoptosis in MDA-MB231 cells via inhibiting NF-Ï°Bp65, STAT3 phosphorylation, increasing Bax/Bcl-2 ratio, MMP dissipation, and activation of caspase-3. These results provide a rationale for further in vivo investigations on EriB, which might also prove to be a potential drug candidate for developing novel therapeutics against TNBC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo
18.
Saudi J Biol Sci ; 25(7): 1326-1331, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30505177

RESUMO

This study's objective was to assess a seasonal impact of industrial and sewage waste disposal on water quality of the river upstream Trimu Head. Considering the significance of the river, drain wastewater was analyzed during the summer and the winter seasons from pre-determined locations. Water quality parameters were recorded higher than the maximum permissible limits prescribed by WHO for freshwater bodies. Level of these Physio-chemical variables was higher in the winter due to the least amount of water from domestic sewage. Although some of these parameters indicated sedimentation hitherto the water quality of River Chenab was found very poor due to the pollution bestowed by tributary waste water from drains. Findings of this investigation suggest the importance of continuous monitoring and assessment to improve the water quality of the river. This study provides a baseline data which may be compared to assess any further deterioration in the water quality and may also be used to plan future monitoring and required restoration of habitat for the safe supply of fish to the population of this region.

19.
Saudi J Biol Sci ; 25(4): 755-759, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29740241

RESUMO

This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs) profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream) and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ±â€¯0.01, 13.45 ±â€¯0.01 and 0.93 ±â€¯0.03%, respectively). The high protein content (14.73 ±â€¯0.01 and 14.12 ±â€¯0. 01%) was recorded in C. catla procured from non-polluted (upstream) wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed) and C. mrigala (polluted area), respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream) major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream) and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the human population.

20.
Saudi J Biol Sci ; 25(2): 393-398, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29472797

RESUMO

Owing to white meat production Labeo rohita have vast economic importance, but its population has been reduced drastically in River Chenab due to pollution. Atomic absorption spectrophotometry showed a merciless toxicity level of Cd, Cu, Mn, Zn, Pb, Cr, Sn and Hg. Comet assay results indicated significant (p < .05) DNA fragmentation in Labeo rohita as 42.21 ±â€¯2.06%, 31.26 ±â€¯2.41% and 21.84 ±â€¯2.21% DNA in comet tail, tail moment as 17.71 ±â€¯1.79, 10.30 ±â€¯1.78 and 7.81 ±â€¯1.56, olive moment as 13.58 ±â€¯1.306, 8.10 ±â€¯1.04 and 5.88 ±â€¯0.06, respectively, from three different polluted sites on the river. Micronucleus assay showed similar findings of single micronucleus induction (MN) as 50.00 ±â€¯6.30‰, double MN 14.40 ±â€¯2.56‰, while nuclear abnormalities (NA) were found as 150.00 ±â€¯2.92‰. These higher frequencies of MN induction and NA were found to be the cause of reduction of 96% of the population of this fish species in an experimental area of the River Chenab. This fish species has been found near extinction through the length of the river Chenab and few specimens in rainy seasons if restored by flood, may die in sugarcane mill season. Due to sweeping extinction Labeo rohita showed the highest sensitivity for pollution and could be used as bioindicator and DNA fragmentation in this column feeder fish species as a biomarker of the pollution load in freshwater bodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...