Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 8: txae054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689758

RESUMO

The objective of this study was to evaluate the effect of a proprietary strain of a Bacillus subtilis on in vitro ruminal fermentation and methane production in batch culture serum bottles. One hundred forty-nine batch culture bottles were used in a complete randomized block design. The arrangement of treatments was a 3 × 3 × 4 factorial to evaluate the effects of inoculum, time, diet, and their respective interactions. There were three experimental runs total, where the run was used as block. Inoculum treatments were 1.85 mg/mL of microcrystalline cellulose (CON); 10 billion B. subtilis plus microcrystalline cellulose (A1); and 60 billion B. subtilis plus microcrystalline cellulose (A2). Diet treatments were 0.50 g of early lactation diet (E, 30% starch), mid-lactation diet (M, 25% starch), or dry cow diet (D, 18% starch). The combination resulted in total of nine treatments. Each treatment had five replicates, two of which were used to determine nutrient degradability at 24 and 48 h after inoculation, and three were used to determine pH, ammonia nitrogen (NH3-N), volatile fatty acids, lactate, total gas, and methane production at 3, 6, 24, and 48 h after inoculation. Fixed effects of inoculum, diet, and their interaction were tested using the GLIMMIX procedure of SAS. Significance was declared at P ≤ 0.05. We observed that, compared to control, the supplementation of B. subtilis, decreased the production of acetate and propionate, while increasing the production of butyrate, iso-butyrate, valerate, iso-valerate, and caproate within each respective diet. Additionally, the total methane production exhibited mixed responses depending on the diet type. Overall, the inclusion of B. subtilis under in vitro conditions shows the potential to reduce ruminal methane production when supplemented with a mid-lactation diet, constituting a possible methane mitigation additive for dairy cattle diets.

2.
Transl Anim Sci ; 8: txad148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221956

RESUMO

The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 µM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.

3.
Transl Anim Sci ; 7(1): txad099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701126

RESUMO

The utilization of microencapsulated organic acids and pure botanicals (mOAPB) is widely used in the monogastric livestock industry as an alternative to antibiotics; in addition, it can have gut immunomodulatory functions. More recently, an interest in applying those compounds in the ruminant industry has increased; thus, we evaluated the effects of mOAPB on ruminal fermentation kinetics and metabolite production in an in vitro dual-flow continuous-culture system. For this study, two ruminal cannulated lactating dairy Holstein cows were used as ruminal content donors, and the inoculum was incubated in eight fermenters arranged in a 4 × 4 Latin square design. The basal diet was formulated to meet the nutritional requirements of a 680-kg Holstein dairy cow producing 45 kg/d of milk and supplemented with increasing levels of mOAPB (0; 0.12; 0.24; or 0.36% of dry matter [DM]), which contained 55.6% hydrogenated and refined palm oil, 25% citric acid, 16.7% sorbic acid, 1.7% thymol, and 1% vanillin. Diet had 16.1 CP, 30.9 neutral detergent fiber (NDF), and 32.0 starch, % of DM basis, and fermenters were fed 106 g/d split into two feedings. After a 7 d adaptation, samples were collected for 3 d in each period. Samples of the ruminal content from the fermenters were collected at 0, 1, 2, 4, 6, and 8 h postmorning feeding for evaluation of the ruminal fermentation kinetics. For the evaluation of the daily production of total metabolites and for the evaluation of nutrient degradability, samples from the effluent containers were collected daily at days 8 to 10. The statistical analysis was conducted using MIXED procedure of SAS and treatment, time, and its interactions were considered as fixed effects and day, Latin square, and fermenter as random effects. To depict the treatment effects, orthogonal contrasts were used (linear and quadratic). The supplementation of mOAPB had no major effects on the ruminal fermentation, metabolite production, and degradability of nutrients. The lack of statistical differences between control and supplemented fermenters indicates effective ruminal protection and minor ruminal effects of the active compounds. This could be attributed to the range of daily variation of pH, which ranged from 5.98 to 6.45. The pH can play a major role in the solubilization of lipid coat. It can be concluded that mOAPB did not affect the ruminal fermentation, metabolite production, and degradability of dietary nutrients using an in vitro rumen simulator.

4.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 435-443, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35686542

RESUMO

This study aimed to study the effect of excessive elemental sulfur addition on intake, digestibility, rumen characteristics, blood metabolites and nitrogen balance in Thai native beef cattle fed diets containing high fresh cassava root (FCR) supplementation. Four Thai native beef cattle with an initial body weight (BW) of 100 ± 10.0 kg were used and randomly assigned to a 2 × 2 factorial in a 4 × 4 Latin square design. Two levels of FCR supplementation at 15 (FCR-1.5) and 20 g/kg of BW (FCR-2) and two levels of sulfur supplementation in concentrate at 10 (Sulfur-1) and 20 g/kg dry matter concentrate (Sulfur-2) were evaluated. This study showed that sulfur and FCR in combination (p < 0.05) increased dry matter and organic matter digestibility and bacterial population. Sulfur-2 resulted in higher (p < 0.05) sulfur intake and serum thiocyanate concentration than Sulfur-1. FCR-2 had a greater (p < 0.05) FCR intake, total volatile fatty acids and propionate concentration than FCR-1.5. In conclusion, excessive elemental sulfur addition with high FCR supplementation showed no negative effect in Thai native beef cattle.


Assuntos
Suplementos Nutricionais , Manihot , Animais , Bovinos , Ração Animal/análise , Dieta/veterinária , Digestão , Ingestão de Alimentos , Fermentação , Nitrogênio/metabolismo , Rúmen/metabolismo , Enxofre/metabolismo , Enxofre/farmacologia
5.
Vet Med Int ; 2022: 9752400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226030

RESUMO

Fresh cassava roots that contain hydrocyanic acid (HCN) can be hazardous to animals when consumed. Prior literature has shown that adding sulfur may eliminate HCN without harming the health of animals. Additionally, adding urea is advised if sulfur was utilized since it helps with microbial protein synthesis. We thus proposed that supplementing the fresh cassava root diet with a high sulfur and urea in concentrate diet would be advantageous for rumen fermentation and milk production in animals. The purpose of this study was to see how high sulfur and urea levels in concentrate combinations affected feed utilization, rumen fermentation, and milk production in dairy cows fed diets including fresh cassava root. Four Holstein Friesian cows with 480 ± 50.0 kg BW, 10 ± 2 kg/head/day of milk yield, and 90 days in milk (DIM) were assigned at random in a 4 × 4 Latin square design with a 2 × 2 factorial design. Factor A was the concentration of sulfur in the concentrate diet at 10 g/kg and 20 g/kg dry matter (DM), while factor B was the concentration of urea in the concentrate diet at 10 g/kg and 20 g/kg DM. Fresh cassava root was given to each cow on a daily basis at a rate of 15 g DM/kg of BW. According to the findings, sulfur and urea had no interaction impact on feed intake, rumen fermentation, or milk production. Sulfur supplementation at 20 g/kg DM improved sulfur intake and digestibility of DM and organic matter much more than 10 g/kg sulfur. Additionally, sulfur supplementation at a dose of 20 g/kg DM in concentrate markedly increased blood and milk thiocyanate concentrations while lowering the somatic cell count. When compared to 10 g/kg DM urea, 20 g/kg DM urea significantly enhanced crude protein digestibility, ammonia-nitrogen concentration, blood urea nitrogen, and total volatile fatty acid concentration. Sulfur might detoxify hydrogen cyanide toxicity and be added at 20 g/kg DM in concentrate without harming the animals, whereas urea at 20 g/kg DM could increase feed digestion and rumen fermentation.

6.
BMC Vet Res ; 17(1): 304, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503491

RESUMO

BACKGROUND: Total fresh cassava root (FCR) production was 275 million tonnes in 2018 which equals 61.1 % of the total production, and Thailand produced 10.7 % FCR of the total production. FCR is one of the main energy source for ruminant. The limitation of FCR utilization is due to the presence of hydrogen cyanide (HCN). The study aimed to evaluate the effect of sulfur, urea and FCR at various levels on in vitro gas production, ruminal fermentation and in vitro degradability. The study hypothesized that: (1) sulfur, urea and FCR have no interaction effect and (2) effect of FCR and urea is related to sulfur addition. RESULTS: The study aimed to elucidate the optimum level of elemental sulfur, fresh cassava root (FCR) and urea and their effect on in vitro gas production, ruminal fermentation, thiocyanate concentration, and in vitro degradability. A 3 × 2 × 4 in a completely randomized design were conducted. Factor A was level of sulfur at 0 %, 1 and 2 % of concentrate dry matter (DM), factor B was level of urea at 2 and 4 % of concentrate DM, and factor C was level of the FCR at 0, 200, 300 and 400 mg DM of the total substrate. The study found that elemental sulfur, urea and FCR had no interaction effect on the kinetics of in vitro gas, ruminal fermentation, HCN and in vitro degradability. Elemental sulfur supplementation (P < 0.05) significantly increased the in vitro gas produced from an insoluble fraction (b), in vitro DM degradability and either neutral detergent fiber (NDF) or acid detergent fiber (ADF) degradability and propionate (C3) concentration while decreased the ruminal HCN concentration. Urea levels showed a (P < 0.05) significant increase of the potential extent of in vitro gas production, ruminal ammonia nitrogen (NH3-N) and total volatile fatty acid (TVFA). Fresh cassava root supplementation (P < 0.05) significantly increased the in vitro gas produced from an immediate soluble fraction (a), in vitro gas produced from insoluble fraction, in vitro gas production rate constant, total VFA, C3 concentration and HCN while decreased ruminal pH, acetate and butyrate concentration. It could be concluded that 2 % elemental sulfur, 4 % urea and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation and HCN reduction. CONCLUSIONS: The study found that elemental sulfur, urea, and FCR had no interaction effect on the kinetics of in vitro gas, total in vitro gas, ruminal fermentation, and HCN concentration. It could be concluded that 2 % elemental sulfur, 4 % urea, and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation, and HCN reduction.


Assuntos
Ração Animal/análise , Metano/metabolismo , Raízes de Plantas/metabolismo , Rúmen/efeitos dos fármacos , Enxofre/farmacologia , Ureia/farmacologia , Animais , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Digestão/fisiologia , Fermentação/efeitos dos fármacos , Fermentação/fisiologia , Manihot/metabolismo , Metano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...