Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(6): 4059-4085, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36882960

RESUMO

Identification of structurally novel inhibitors of lysine methyltransferase G9a has been a subject of intense research in cancer epigenetics. Starting with the high-throughput screening (HTS) hit rac-10a obtained from the chemical library of the University of Tokyo Drug Discovery Initiative, the structure-activity relationship of the unique substrate-competitive inhibitors was established with the help of X-ray crystallography and fragment molecular orbital (FMO) calculations for the ligand-protein interaction. Further optimization of the in vitro characteristics and drug metabolism and pharmacokinetics (DMPK) properties led to the identification of 26j (RK-701), which is a structurally distinct potent inhibitor of G9a/GLP (IC50 = 27/53 nM). Compound 26j exhibited remarkable selectivity against other related methyltransferases, dose-dependent attenuation of cellular H3K9me2 levels, and tumor growth inhibition in MOLT-4 cells in vitro. Moreover, compound 26j showed inhibition of tumor initiation and growth in a carcinogen-induced hepatocellular carcinoma (HCC) in vivo mouse model without overt acute toxicity.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase , Lisina
2.
Nat Commun ; 14(1): 23, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635268

RESUMO

Sickle cell disease (SCD) is a heritable disorder caused by ß-globin gene mutations. Induction of fetal γ-globin is an established therapeutic strategy. Recently, epigenetic modulators, including G9a inhibitors, have been proposed as therapeutic agents. However, the molecular mechanisms whereby these small molecules reactivate γ-globin remain unclear. Here we report the development of a highly selective and non-genotoxic G9a inhibitor, RK-701. RK-701 treatment induces fetal globin expression both in human erythroid cells and in mice. Using RK-701, we find that BGLT3 long non-coding RNA plays an essential role in γ-globin induction. RK-701 selectively upregulates BGLT3 by inhibiting the recruitment of two major γ-globin repressors in complex with G9a onto the BGLT3 gene locus through CHD4, a component of the NuRD complex. Remarkably, BGLT3 is indispensable for γ-globin induction by not only RK-701 but also hydroxyurea and other inducers. The universal role of BGLT3 in γ-globin induction suggests its importance in SCD treatment.


Assuntos
Anemia Falciforme , RNA Longo não Codificante , Camundongos , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , gama-Globinas/genética , Células Eritroides/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Expressão Gênica , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
3.
Bioorg Med Chem Lett ; 23(19): 5311-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988356

RESUMO

We previously identified KCA-1490 [(-)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model.


Assuntos
Anti-Inflamatórios , Desenho de Fármacos , Inibidores da Fosfodiesterase 4 , Pirazóis/síntese química , Piridinas , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Modelos Animais , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade
5.
Chemistry ; 13(36): 10246-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17896333

RESUMO

Proline-based organocatalysts have been developed for a highly enantioselective, direct aldol reaction of aldehydes and ketones in the presence of water. While several surfactant-proline combined catalysts have proved effective, proline derivatives with a hydrophobic moiety such as trans-siloxy-L-proline and cis-siloxy-D-proline, both of which are easily prepared from the same commercially available 4-hydroxy-L-proline, have been found to be the most effective organocatalysts examined in this study, affording the aldol product with excellent diastereo- and enantioselectivities, these two catalysts generating opposite enantiomers. Water affects the selectivity, and poor results are obtained under neat reaction conditions or in dry organic solvents. More than three equivalents of water are required for the best diastereo- and enantioselectivities, while three equivalents is the recommended amount from a synthetic point of view. The reaction proceeds in the organic phase, and also proceeds in the presence of a large amount of water. The large-scale preparation of aldols with the minimal use of an organic solvent, including in the purification step, is described.

6.
Chem Commun (Camb) ; (9): 957-9, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17311133

RESUMO

Dry and wet prolines were found to catalyze the direct aldol reactions of aldehyde-aldehyde and aldehyde-ketone, respectively, to afford aldols with excellent diastereo- and enantioselectivities, and an organic solvent-free reaction was realized in some cases.

9.
J Org Chem ; 69(18): 5966-73, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15373480

RESUMO

The direct proline-catalyzed asymmetric alpha-aminoxylation of aldehydes and ketones has been developed using nitrosobenzene as an oxygen source, affording alpha-anilinoxy-aldehydes and -ketones with excellent enantioselectivity. Reaction conditions have been optimized, and low temperature (-20 degrees C) was found to be a key for the successful alpha-aminoxylation of aldehydes, while slow addition of nitrosobenzene is essential for that of ketones. The scope of the reaction is presented.


Assuntos
Aldeídos/química , Cetonas/química , Prolina/química , Catálise , Modelos Moleculares , Estrutura Molecular , Compostos Nitrosos/química , Oxigênio/química , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...