Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 126(3): 250-266, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35183341

RESUMO

Many species in the Fusarium fujikuroi Species Complex (FFSC) have an affinity for grass species, with whom they live in an endophytic association or cause disease. We recovered isolates of Fusarium from agriculturally important grasses in Africa and Brazil, and characterized them with morphological markers, mating type, and Amplified Fragment Length Polymorphisms (AFLPs). We also conducted multi-locus phylogenetic analyses based on partial DNA sequences of translation elongation factor-1α (TEF1), ß-tubulin (TUB), and the second largest subunit of RNA polymerase (RPB2) gene regions. Sexual cross fertility was used to test the biological species concept and the sexual stage of F. madaense is described. A novel species within the FFSC, Fusarium mirum, that is different from the other known species in the complex, was formally described. Fusarium mirum, F. madaense, and Fusarium andiyazi are a tightly intertwined species trio that are morphologically identical, but phylogenetically distinguishable, and amongst whom interspecific genetic exchange may still occur. These three species are so close that they cannot be reliably distinguished if only sequences of the TEF1 gene are used. In pathogenicity tests, all tested isolates of F. madaense from sugarcane, sorghum, maize, millet and Brachiaria could induce stalk rot in sorghum, maize and millet, and pokkah boeng in sugarcane. This study increases our understanding of the diversity of species within the FFSC that cause disease in tropical grasses or act as endophytes, and their geographic distributions. The genetically close relationship between F. mirum, F. madaense, and F. andiyazi provides an opportunity to study and identify factors underlying their limited inter-specific cross-fertility and sympatric speciation.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Poaceae , Zea mays
2.
BMC Genomics ; 22(1): 734, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627148

RESUMO

BACKGROUND: The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS: A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION: Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.


Assuntos
Fusarium , Fusarium/genética , Pisum sativum , Doenças das Plantas/genética , Transcriptoma , Virulência
3.
MycoKeys ; 78: 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613044

RESUMO

Ascochyta koolunga (Didymellaceae, Pleosporales) was first described in 2009 (as Phoma koolunga) and identified as the causal agent of Ascochyta blight of Pisum sativum (field pea) in South Australia. Since then A. koolunga has not been reported anywhere else in the world, and its origins and occurrence on other legume (Fabaceae) species remains unknown. Blight and leaf spot diseases of Australian native, pasture and naturalised legumes were studied to investigate a possible native origin of A. koolunga. Ascochyta koolunga was not detected on native, naturalised or pasture legumes that had leaf spot symptoms, in any of the studied regions in southern Australia, and only one isolate was recovered from P. sativum. However, we isolated five novel species in the Didymellaceae from leaf spots of Australian native legumes from commercial field pea regions throughout southern Australia. The novel species were classified on the basis of morphology and phylogenetic analyses of the internal transcribed spacer region and part of the RNA polymerase II subunit B gene region. Three of these species, Nothophoma garlbiwalawarda sp. nov., Nothophoma naiawu sp. nov. and Nothophoma ngayawang sp. nov., were isolated from Senna artemisioides. The other species described here are Epicoccum djirangnandiri sp. nov. from Swainsona galegifolia and Neodidymelliopsis tinkyukuku sp. nov. from Hardenbergia violacea. In addition, we report three new host-pathogen associations in Australia, namely Didymella pinodes on S. artemisioides and Vicia cracca, and D. lethalis on Lathyrus tingitanus. This is also the first report of Didymella prosopidis in Australia.

4.
Phytopathology ; 111(8): 1459-1469, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33225833

RESUMO

The genetic diversity of pathogenic members of the Fusarium oxysporum species complex (FOSC) has been intensively studied worldwide, yet strains occurring in native soils with low anthropogenic disturbance remain poorly understood. This study focused on 355 F. oxysporum isolates from soils with low anthropogenic activity obtained from the grassland biome of South Africa. Analysis of the translation elongation factor 1-alpha (tef-1α) gene revealed high levels of sequence type diversity within the soil population in comparison with the global dataset. Phylogenetic relationships of the South African isolates revealed that four nested within FOSC clade 1. This is the first report of members of the basal clade recovered from ecosystems with low anthropogenic disturbance from Sub-Saharan Africa. The remaining strains nested within clades 2 to 5. This study contributes significantly to our understanding of the distribution of the FOSC in natural systems as we show that FOSC populations in the South African grassland biome are genetically diverse. This fills in our knowledge gap because previous studies reported only on the occurrence and diversity of the FOSC isolated from plant debris in South Africa. This is the first comprehensive survey of fusaria from grassland soils with low anthropogenic disturbance in South Africa.


Assuntos
Fusarium , Ecossistema , Fusarium/genética , Variação Genética , Pradaria , Filogenia , Doenças das Plantas , África do Sul
5.
mSphere ; 5(5)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938701

RESUMO

This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold FusariumFusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.


Assuntos
Fusarium/classificação , Filogenia , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos
6.
BMC Genomics ; 21(1): 248, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197583

RESUMO

BACKGROUND: The Fusarium oxysporum species complex (FOSC) is a ubiquitous group of fungal species readily isolated from agroecosystem and natural ecosystem soils which includes important plant and human pathogens. Genetic relatedness within the complex has been studied by sequencing either the genes or the barcoding gene regions within those genes. Phylogenetic analyses have demonstrated a great deal of diversity which is reflected in the differing number of clades identified: three, five and eight. Genetic limitation within the species in the complex has been studied through Genealogical Concordance Phylogenetic Species Recognition (GCPSR) analyses with varying number of phylogenetic 'species' identified ranging from two to 21. Such differing views have continued to confuse users of these taxonomies. RESULTS: The phylogenetic relationships between Australian F. oxysporum isolates from both natural and agricultural ecosystems were determined using three datasets: whole genome, nuclear genes, and mitochondrial genome sequences. The phylogenies were concordant except for three isolates. There were three concordant clades from all the phylogenies suggesting similar evolutionary history for mitochondrial genome and nuclear genes for the isolates in these three clades. Applying a multispecies coalescent (MSC) model on the eight single copy nuclear protein coding genes from the nuclear gene dataset concluded that the three concordant clades correspond to three phylogenetic species within the FOSC. There was 100% posterior probability support for the formation of three species within the FOSC. This is the first report of using the MSC model to estimate species within the F. oxysporum species complex. The findings from this study were compared with previously published phylogenetics and species delimitation studies. CONCLUSION: Phylogenetic analyses using three different gene datasets from Australian F. oxysporum isolates have all supported the formation of three major clades which delineated into three species. Species 2 (Clade 3) may be called F. oxysporum as it contains the neotype for F. oxysporum.


Assuntos
Fusarium/classificação , Sequenciamento Completo do Genoma/estatística & dados numéricos , Núcleo Celular/genética , Evolução Molecular , Fusarium/genética , Fusarium/isolamento & purificação , Genoma Fúngico , Mitocôndrias/genética , Filogenia
7.
Plant Dis ; 104(5): 1465-1476, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32191160

RESUMO

Fusarium solani f. sp. cucurbitae (syn. Neocosmosporum cucurbitae) is one of the most devastating soilborne pathogens affecting the production of cucurbits worldwide. Since its first detection in Almería Province in Spain in the spring of 2007, it has become one of the main soilborne pathogens affecting zucchini production. It has also been reported on melon, watermelon, and squash rootstocks in Spain, representing a high risk of dissemination in the area. The objectives of this study were to investigate the incidence and distribution of this disease in southeastern Spain and characterize isolates collected over 5 years. These strains were characterized on the basis of greenhouse aggressiveness assays on a range of cucurbit hosts, morphological characteristics, and elongation factor 1-α and RNA polymerase II second largest subunit phylogenies. All pathogenic isolates were highly aggressive on zucchini plants, causing a high mortality rate a few weeks after inoculation. The rest of the cucurbit hosts showed differential susceptibility to the pathogen, with cucumber being the least susceptible. Plants belonging to other families remained asymptomatic. Morphological characterization revealed the formation of verticilate monophialides and chlamydospores forming long chains, characteristics not described for this forma specialis. Phylogenetic studies of both the individual loci and combined datasets revealed that all pathogenic isolates clustered together with strong monophyletic support, nested within clade 3 in the F. solani species complex.


Assuntos
Citrullus , Cucurbitaceae , Fusarium , Filogenia , Espanha
8.
Annu Rev Phytopathol ; 57: 323-339, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31226019

RESUMO

The fungal genus Fusarium is one of the most important groups of plant-pathogenic fungi and affects a huge diversity of crops in all climatic zones across the globe. In addition, it is also a human pathogen and produces several extremely important mycotoxins in food products that have deleterious effects on livestock and humans. These fungi have been plagued over the past century by different perspectives of what constitutes the genus Fusarium and how many species occur within the genus. Currently, there are conflicting views on the generic boundaries and what defines a species that impact disease diagnosis, management, and biosecurity legislation. An approach to defining and identifying Fusarium that places the needs of the community of users (especially, in this case, phytopathologists) to the forefront is presented in this review.


Assuntos
Fusarium , Micotoxinas , Produtos Agrícolas , Fungos , Humanos
9.
Toxins (Basel) ; 7(11): 4577-94, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556373

RESUMO

Fusarium goolgardi, isolated from the grass tree Xanthorrhoea glauca in natural ecosystems of Australia, is closely related to fusaria that produce a subgroup of trichothecene (type A) mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Mass spectrometric analysis revealed that F. goolgardi isolates produce type A trichothecenes, but exhibited one of two chemotypes. Some isolates (50%) produced multiple type A trichothecenes, including 4,15-diacetoxyscirpenol (DAS), neosolaniol (NEO), 8-acetylneosolaniol (Ac-NEO) and T-2 toxin (DAS-NEO-T2 chemotype). Other isolates (50%) produced only DAS (DAS chemotype). In the phylogenies inferred from DNA sequences of genes encoding the RNA polymerase II largest (RPB1) and second largest (RPB2) subunits as well as the trichothecene biosynthetic genes (TRI), F. goolgardi isolates were resolved as a monophyletic clade, distinct from other type A trichothecene-producing species. However, the relationships of F. goolgardi to the other species varied depending on whether phylogenies were inferred from RPB1 and RPB2, the 12-gene TRI cluster, the two-gene TRI1-TRI16 locus, or the single-gene TRI101 locus. Phylogenies based on different TRI loci resolved isolates with different chemotypes into distinct clades, even though only the TRI1-TRI16 locus is responsible for structural variation at C-8. Sequence analysis indicated that TRI1 and TRI16 are functional in F. goolgardi isolates with the DAS-NEO-T2 chemotype, but non-functional in isolates with DAS chemotype due to the presence of premature stop codons caused by a point mutation.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Tricotecenos/biossíntese , Tricotecenos/genética , Sequência de Aminoácidos , Austrália , Sequência de Bases , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Genes Fúngicos/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Especificidade da Espécie , Árvores/microbiologia
10.
Fungal Biol ; 118(4): 374-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24742832

RESUMO

Fusarium oxysporum is an important plant and human pathogenic ascomycetous group, with near ubiquity in agricultural and non-cultivated ecosystems. Phylogenetic evidence suggests that F. oxysporum is a complex of multiple morphologically cryptic species. Species boundaries and limits of genetic exchange within this complex are poorly defined, largely due to the absence of a sexual state and the paucity of morphological characters. This study determined species boundaries within the F. oxysporum species complex using Genealogical Concordance Phylogenetic Species Recognition (GCPSR) with eight protein coding loci. GCPSR criteria were used firstly to identify independent evolutionary lineages (IEL), which were subsequently collapsed into phylogenetic species. Seventeen IELs were initially identified resulting in the recognition of two phylogenetic species. Further evidence supporting this delineation is discussed.


Assuntos
Fusarium/classificação , Fusarium/genética , Filogenia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Análise de Sequência de DNA
11.
Fungal Biol ; 116(2): 289-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22289774

RESUMO

The Fusarium oxysporum species complex (FOSC) is a ubiquitous ascomycetous group that includes both pathogenic and non-pathogenic strains, the former being responsible for disease in over 100 cultivated plant species. Previous phylogenetic studies have uncovered at least four major clades within the FOSC, with Clade 1 hypothesised as being ancestral. However, the origin of these clades and pathogenic strains is poorly understood. Due to an emphasis on agricultural isolates in previous studies, the underlying diversity of this species complex in non-cultivated soils is largely unknown. To address this imbalance an extensive survey of isolates associated with native vegetation geographically isolated from cultivation throughout the Australian continent was conducted. A multi-gene phylogenetic analysis of the translation elongation factor (EF-1α) and the mitochondrial small subunit (mtSSU) rDNA loci did not recover any novel clades. However, the Australian isolates had high levels of intra-Clade diversity based on EF-1α sequence type (ST) comparison with a global dataset. The ST diversity was not equally distributed across the four clades, with the majority of novel STs recovered from Clade 1. Implications on the origin of the FOSC are discussed.


Assuntos
Microbiologia Ambiental , Fusarium/classificação , Fusarium/isolamento & purificação , Variação Genética , Austrália , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ecossistema , Fusarium/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA
12.
IMA Fungus ; 2(1): 49-64, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22679588

RESUMO

Species in the present study were compared based on their morphology, growth characteristics in culture, and DNA sequences of the nuclear ribosomal RNA gene operon (including ITS1, ITS2, 5.8S nrDNA and the first 900 bp of the 28S nrDNA) for all species and partial actin and translation elongation factor 1-alpha gene sequences for Cladosporium species. New species of Mycosphaerella (Mycosphaerellaceae) introduced in this study include M. cerastiicola (on Cerastium semidecandrum, The Netherlands), and M. etlingerae (on Etlingera elatior, Hawaii). Mycosphaerella holualoana is newly reported on Hedychium coronarium (Hawaii). Epitypes are also designated for Hendersonia persooniae, the basionym of Camarosporula persooniae, and for Sphaerella agapanthi, the basionym of Teratosphaeria agapanthi comb. nov. (Teratosphaeriaceae) on Agapathus umbellatus from South Africa. The latter pathogen is also newly recorded from A. umbellatus in Europe (Portugal). Furthermore, two sexual species of Cladosporium (Davidiellaceae) are described, namely C. grevilleae (on Grevillea sp., Australia), and C. silenes (on Silene maritima, UK). Finally, the phylogenetic position of two genera are newly confirmed, namely Camarosporula (based on C. persooniae, teleomorph Anthracostroma persooniae), which is a leaf pathogen of Persoonia spp. in Australia, belongs to the Teratosphaeriaceae, and Sphaerulina (based on S. myriadea), which occurs on leaves of Fagaceae (Carpinus, Castanopsis, Fagus, Quercus), and belongs to the Mycosphaerellaceae.

13.
Evol Appl ; 3(5-6): 505-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25567943

RESUMO

Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1α, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1-8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions.

14.
Phytopathology ; 98(2): 250-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18943202

RESUMO

Crown rot, caused by the fungus Fusarium pseudograminearum (teleomorph Gibberella coronicola) is a major disease of wheat in the Australian grain belt. However, there is little information available on the population structure of this pathogen. We measured genetic diversity as assessed with amplified fragment length polymorphism (AFLP) analysis within and between populations of F. pseudograminearum from northeastern, south central, and southwestern regions of the Australian grain belt. Amongst the 217 isolates, 176 haplotypes were identified and grouped into two main clusters. One cluster contained isolates from populations in northeastern Australia, and the other cluster contained isolates from populations in south central and southwestern Australia. The southern populations were distinguished from the northeastern populations by higher levels of population differentiation (Gst) between them and genetic identity amongst the regional populations. We hypothesize that the F. pseudograminearum populations from northeastern and southern Australia are independent, which could result from different founding events or from geographic isolation and the accumulation of genetic differences due to genetic drift and/or selection.


Assuntos
Fusarium/genética , Variação Genética , Triticum/microbiologia , Austrália , Fusarium/isolamento & purificação , Geografia , Microbiologia do Solo
15.
Mycol Res ; 112(Pt 9): 1101-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694636

RESUMO

Numerous pathogenic Fusarium species have well-characterized sexual cycles, whereas others, including the crown rot fungus F. pseudograminearum, do not. We conducted studies to elucidate the potential frequency and nature of sexual reproduction in field populations of F. pseudograminearum and developed tester strains for controlled crossings under laboratory conditions. Studies on the role of sexual recombination in the life cycle of F. pseudograminearum revealed apparently low levels of female fertility under controlled laboratory conditions, despite the observation of naturally occurring perithecia of the teleomorph Gibberella coronicola at two field sites. Female fertility levels were experimentally increased to produce female fertile tester strains using four generations of single and multi-stage crossings between sibling progeny derived from fertile laboratory crosses between field isolates collected in northeastern Australia. The production of reliable female fertile tester strains has potential applications for the construction of biological species boundaries, elucidation of the physical characters of reproductive structures, and the generation of genetic diversity via sexual recombination in F. pseudograminearum. As such, the current study is a significant advancement in the understanding of G. coronicola, allowing for future characterisation of various biological, epidemiological, and genetic parameters.


Assuntos
Cruzamentos Genéticos , Fusarium , Gibberella , Ágar , Austrália , Pão/microbiologia , Daucus carota/metabolismo , Fusarium/classificação , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Gibberella/classificação , Gibberella/genética , Gibberella/crescimento & desenvolvimento , Gibberella/fisiologia , Doenças das Plantas/microbiologia , Recombinação Genética , Reprodução/genética , Triticum/microbiologia
16.
Mycologia ; 97(3): 718-24, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16392259

RESUMO

We described the teleomorph of Fusarium sacchari as Gibberella sacchari, sp. nov. This species can be separated from other species of Gibberella on the basis of the longer, narrower ascospores found in G. sacchari and by sexual cross fertility. Female-fertile mating type tester strains were developed that can be used for making sexual crosses with this heterothallic fungus under laboratory conditions. The anamorph, Fusarium sacchari, was neotypified.


Assuntos
Fusarium/classificação , Gibberella/classificação , Cruzamentos Genéticos , Fusarium/citologia , Genes Fúngicos Tipo Acasalamento , Gibberella/citologia , Microscopia , Reação em Cadeia da Polimerase , Esporos Fúngicos/citologia
17.
Plant Dis ; 87(2): 117-128, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30812915
18.
Mycologia ; 95(5): 943-54, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-21149001

RESUMO

The Gibberella fujikuroi species complex (Fusarium section Liseola and allied taxa) is composed of an increasingly large number of morphological, biological and phylogenetic species. Most of the known species in this group have been isolated from agricultural ecosystems or have been described from a small number of isolates. We sampled Fusarium communities from native prairie grasses in Kansas and recovered a large number of isolates that superficially resemble F. anthophilum. We used a combination of morphological, biological and molecular characters to describe a new species, Gibberella konza (Gibberella fujikuroi mating population I [MP-I]), from native prairie grasses in Kansas. Although female fertility for field isolates of this species appears to be low, G. konza is heterothallic, and we developed reliably female fertile mating population tester strains for this species. The F. konzum anamorph is differentiated from F. anthophilum and from other Fusarium species in section Liseola by mating compatibility, morphology, AFLP fingerprint profile and differences in ß-tubulin DNA sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...