Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722417

RESUMO

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Fator de Transcrição STAT3 , Animais , Feminino , Bovinos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Células Epiteliais/metabolismo , Fator de Transcrição STAT3/metabolismo , Fosforilação , Gravidez , Parto/fisiologia , Parto/metabolismo , Transdução de Sinais
2.
New Phytol ; 240(3): 1305-1326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37678361

RESUMO

Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time-consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad-scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in 'real-world' environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Citometria de Fluxo , Filogenia , Pólen
3.
Cell Rep Methods ; 3(2): 100398, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936072

RESUMO

Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study's objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Redes Neurais de Computação , Software
4.
PLoS One ; 17(12): e0279751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584149

RESUMO

BACKGROUND: Like many countries in sub-Saharan Africa, Kenya has experienced rapid urbanization in recent years. Despite the distinct socioeconomic and environmental differences, few studies have examined the adherence to movement guidelines in urban and rural areas. This cross-sectional study aimed at examining compliance to the 24-hour movement guidelines and their correlates among children from urban and rural Kenya. METHOD: Children (n = 539) aged 11.1 ± 0.8 years (52% female) were recruited from 8 urban and 8 rural private and public schools in Kenya. Physical activity (PA) and sleep duration were estimated using 24-h raw data from wrist-worn accelerometers. Screen time (ST) and potential correlates were self- reported. Multi-level logistic regression was applied to identify correlates of adherence to combined and individual movement guidelines. RESULTS: Compliance with the combined movement guidelines was low overall (7%), and higher among rural (10%) than urban (5%) children. Seventy-six percent of rural children met the individual PA guidelines compared to 60% urban children while more rural children also met sleep guidelines (27% vs 14%). The odds of meeting the combined movement guidelines reduced with age (OR = 0.55, 95% CI = 0.35-0.87, p = 0.01), was greater among those who could swim (OR = 3.27, 95% CI = 1.09-9.83, p = 0.04), and among those who did not engage in ST before school (OR = 4.40, 95% CI = 1.81-10.68, p<0.01). The odds of meeting PA guidelines increased with the number of weekly physical education sessions provided at school (OR = 2.1, 95% CI = 1.36-3.21, p<0.01) and was greater among children who spent their lunch break walking (OR = 2.52, 95% CI = 1.15-5.55, p = 0.02) or running relative to those who spent it sitting (OR = 2.33, 95% CI = 1.27-4.27, p = 0.01). CONCLUSIONS: Prevalence of meeting movement guidelines among Kenyan children is low and of greatest concern in urban areas. Several correlates were identified, particularly influential were features of the school day, School is thus a significant setting to promote a healthy balance between sleep, sedentary time, and PA.


Assuntos
Comportamento Sedentário , Natação , Humanos , Criança , Feminino , Masculino , Quênia , Prevalência , Estudos Transversais , Sono
5.
Cell Rep Methods ; 2(11): 100348, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452868

RESUMO

Automated microscopy and computational image analysis has transformed cell biology, providing quantitative, spatially resolved information on cells and their constituent molecules from the sub-micron to the whole-organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue microscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical tool set for which the required data are readily captured using standard protocols and microscopy equipment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tissues in terms of the applicability of different statistical measures and their accuracy and demonstrate how spatial analyses offer a great deal more than just basic quantification of biological variance. Ultimately, we highlight how statistical modeling can help reveal the hierarchical spatial processes that connect the properties of individual cells to the establishment of biological function.


Assuntos
Fenômenos Biológicos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Modelos Estatísticos
6.
J Biomech ; 140: 111167, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661536

RESUMO

Functional principal components define modes of variation in time series, which represent characteristic movement patterns in biomechanical data. Their usefulness however depends on the prior choices made in data processing. Recent research showed that better curve alignment achieved with registration (dynamic time warping) reduces errors in linear models predicting jump height. However, the efficacy of registration in different preprocessing combinations, including time normalisation, padding and feature extraction, is largely unknown. A more comprehensive analysis is needed, given the potential value of registration to machine learning in biomechanics. We evaluated popular preprocessing methods combined with registration, creating 512 models based on ground reaction force data from 385 countermovement jumps. The models either predicted jump height or classified jumps into those performed with or without arm swing. Our results show that the classification models benefited from registration in various forms, particularly when landmarks were placed at critical points. The best classifier achieved a 5.5 percentage point improvement over the equivalent unregistered model. However, registration was detrimental to the jump height models, although this performance variable may be a special case given its direct relationship with impulse. Our meta-models revealed the relative contributions made by various preprocessing operations, highlighting that registration does not generalise so well to new data. Nonetheless, our analysis shows the potential for registration in further biomechanical applications, particularly in classification, when combined with the other appropriate preprocessing operations.


Assuntos
Fenômenos Mecânicos , Movimento , Fenômenos Biomecânicos , Modelos Lineares , Fatores de Tempo
7.
PLoS One ; 17(2): e0263846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143555

RESUMO

External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have not been sufficiently accurate for athlete monitoring. Instead, we developed a machine learning model based on characteristic features (functional principal components) extracted from a single body-worn accelerometer. Data were collected from 69 male and female athletes at recreational, club or national levels, who performed 696 jumps in total. We considered vertical countermovement jumps (with and without arm swing), sensor anatomical locations, machine learning models and whether to use resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we obtained the lowest errors with a support vector machine when using the resultant signal from a lower back sensor in jumps without arm swing. This model had a peak power RMSE of 2.3 W·kg-1 (5.1% of the mean), estimated using nested cross validation and supported by an independent holdout test (2.0 W·kg-1). This error is lower than in previous studies, although it is not yet sufficiently accurate for a field-based method. Our results demonstrate that functional data representations work well in machine learning by reducing model complexity in applications where signals are aligned in time. Our optimisation procedure also was shown to be robust can be used in wider applications with low-cost, noisy objective functions.


Assuntos
Acelerometria/instrumentação , Exercício Físico/fisiologia , Atletas , Feminino , Humanos , Aprendizado de Máquina , Masculino , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-37655209

RESUMO

Imaging flow cytometry combines the high throughput nature of flow cytometry with the advantages of single cell image acquisition associated with microscopy. The measurement of large numbers of features from the resulting images provides rich datasets which have resulted in a wide range of novel biomedical applications. In this primer we discuss the typical imaging flow instrumentation, the form of data acquired and the typical analysis tools that can be applied to this data. Using examples from the literature we discuss the progression of the analysis methods that have been applied to imaging flow cytometry data. These methods start from the use of simple single image features and multiple channel gating strategies, followed by the design and use of custom features for phenotype classification, through to powerful machine and deep learning methods. For each of these methods, we outline the processes involved in analyzing typical datasets and provide details of example applications. Finally we discuss the current limitations of imaging flow cytometry and the innovations which are addressing these challenges.

9.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685047

RESUMO

Nanoparticle drug delivery vehicles introduce multiple pharmacokinetic processes, with the delivery, accumulation, and stability of the therapeutic molecule influenced by nanoscale processes. Therefore, considering the complexity of the multiple interactions, the use of data-driven models has critical importance in understanding the interplay between controlling processes. We demonstrate data simulation techniques to reproduce the time-dependent dose of trimethyl chitosan nanoparticles in an ND7/23 neuronal cell line, used as an in vitro model of native peripheral sensory neurons. Derived analytical expressions of the mean dose per cell accurately capture the pharmacokinetics by including a declining delivery rate and an intracellular particle degradation process. Comparison with experiment indicates a supply time constant, τ = 2 h. and a degradation rate constant, b = 0.71 h-1. Modeling the dose heterogeneity uses simulated data distributions, with time dependence incorporated by transforming data-bin values. The simulations mimic the dynamic nature of cell-to-cell dose variation and explain the observed trend of increasing numbers of high-dose cells at early time points, followed by a shift in distribution peak to lower dose between 4 to 8 h and a static dose profile beyond 8 h.

10.
Arch Toxicol ; 95(9): 3101-3115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245348

RESUMO

The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 µg/mL) and/or carbendazim (0.8-1.6 µg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≤ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks.


Assuntos
Aprendizado Profundo , Citometria de Fluxo/métodos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Automação Laboratorial , Benzimidazóis/administração & dosagem , Benzimidazóis/toxicidade , Carbamatos/administração & dosagem , Carbamatos/toxicidade , Linhagem Celular , Citocinese/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Metanossulfonato de Metila/administração & dosagem , Metanossulfonato de Metila/toxicidade , Mutagênicos/administração & dosagem
11.
Mutagenesis ; 36(4): 311-320, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34111295

RESUMO

Genetic toxicology is an essential component of compound safety assessment. In the face of a barrage of new compounds, higher throughput, less ethically divisive in vitro approaches capable of effective, human-relevant hazard identification and prioritisation are increasingly important. One such approach is the ToxTracker assay, which utilises murine stem cell lines equipped with green fluorescent protein (GFP)-reporter gene constructs that each inform on distinct aspects of cellular perturbation. Encouragingly, ToxTracker has shown improved sensitivity and specificity for the detection of known in vivo genotoxicants when compared to existing 'standard battery' in vitro tests. At the current time however, quantitative genotoxic potency correlations between ToxTracker and well-recognised in vivo tests are not yet available. Here we use dose-response data from the three DNA-damage-focused ToxTracker endpoints and from the in vivo micronucleus assay to carry out quantitative, genotoxic potency estimations for a range of aromatic amine and alkylating agents using the benchmark dose (BMD) approach. This strategy, using both the exponential and the Hill BMD model families, was found to produce robust, visually intuitive and similarly ordered genotoxic potency rankings for 17 compounds across the BSCL2-GFP, RTKN-GFP and BTG2-GFP ToxTracker endpoints. Eleven compounds were similarly assessed using data from the in vivo micronucleus assay. Cross-systems genotoxic potency correlations for the eight matched compounds demonstrated in vitro-in vivo correlation, albeit with marked scatter across compounds. No evidence for distinct differences in the sensitivity of the three ToxTracker endpoints was found. The presented analyses show that quantitative potency determinations from in vitro data enable more than just qualitative screening and hazard identification in genetic toxicology.


Assuntos
Dano ao DNA , Testes de Mutagenicidade/métodos , Mutagênicos/farmacologia , Animais , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde , Camundongos , Testes para Micronúcleos , Células-Tronco
12.
Front Bioinform ; 1: 662210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303763

RESUMO

Many chemotherapeutic drugs target cell processes in specific cell cycle phases. Determining the specific phases targeted is key to understanding drug mechanism of action and efficacy against specific cancer types. Flow cytometry experiments, combined with cell cycle phase and division round specific staining, can be used to quantify the current cell cycle phase and number of mitotic events of each cell within a population. However, quantification of cell interphase times and the efficacy of cytotoxic drugs targeting specific cell cycle phases cannot be determined directly. We present a data driven computational cell population model for interpreting experimental results, where in-silico populations are initialized to match observable results from experimental populations. A two-stage approach is used to determine the efficacy of cytotoxic drugs in blocking cell-cycle phase transitions. In the first stage, our model is fitted to experimental multi-parameter flow cytometry results from untreated cell populations to identify parameters defining probability density functions for phase transitions. In the second stage, we introduce a blocking routine to the model which blocks a percentage of attempted transitions between cell-cycle phases due to therapeutic treatment. The resulting model closely matches the percentage of cells from experiment in each cell-cycle phase and division round. From untreated cell populations, interphase and intermitotic times can be inferred. We then identify the specific cell-cycle phases that cytotoxic compounds target and quantify the percentages of cell transitions that are blocked compared with the untreated population, which will lead to improved understanding of drug efficacy and mechanism of action.

13.
Cell Rep Methods ; 1(6): 100103, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35474900

RESUMO

Deep learning neural networks are a powerful tool in the analytical toolbox of modern microscopy, but they come with an exacting requirement for accurately annotated, ground truth cell images. Otesteanu et al. (2021) elegantly streamline this process, implementing network training by using patient-level rather than cell-level disease classification.


Assuntos
Aprendizado Profundo , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Microscopia
14.
J Extracell Vesicles ; 9(1): 1779458, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32944169

RESUMO

Exosomes (Exo)-based therapy holds promise for treatment of lethal pancreatic cancer (PC). Limited understanding of key factors affecting Exo uptake in PC cells restricts better design of Exo-based therapy. This work aims to study the uptake properties of different Exo by PC cells. Exo from pancreatic carcinoma, melanoma and non-cancer cell lines were isolated and characterised for yield, size, morphology and exosomal marker expression. Isolated Exo were fluorescently labelled using a novel in-house developed method based on copper-free click chemistry to enable intracellular tracking and uptake quantification in cells. Important factors influencing Exo uptake were initially predicted by Design of Experiments (DoE) approach to facilitate subsequent actual experimental investigations. Uptake of all Exo types by PC cells (PANC-1) showed time- and dose-dependence as predicted by the DoE model. PANC-1 cell-derived exosomes (PANC-1 Exo) showed significantly higher uptake in PANC-1 cells than that of other Exo types at the longest incubation time and highest Exo dose. In vivo biodistribution studies in subcutaneous tumour-bearing mice similarly showed favoured accumulation of PANC-1 Exo in self-tissue (i.e. PANC-1 tumour mass) over the more vascularised melanoma (B16-F10) tumours, suggesting intrinsic tropism of PC-derived Exo for their parent cells. This study provides a simple, universal and reliable surface modification approach via click chemistry for in vitro and in vivo exosome uptake studies and can serve as a basis for a rationalised design approach for pre-clinical Exo cancer therapies.

15.
Cytometry A ; 97(12): 1222-1237, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32445278

RESUMO

Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is almost always qualitative. Quantification of images, at the per-cell level, enables "flow cytometry-type" analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches. Moreover, different species (e.g., rat, mouse, and humans) and tissue preparations (paraffin/frozen) are all commonly studied. Here, using field-relevant examples, we develop open, user-friendly methodology that can encompass these variables to provide quantitative tissue microscopy for the field. Antibody-independent cell labeling approaches, compatible across preparation types and species, were optimized. Per-cell data were extracted from routine confocal micrographs, with semantic machine learning employed to tackle densely packed lymphoid tissues. Data analysis was achieved by flow cytometry-type analyses alongside visualization and statistical definition of cell locations, interactions and established microenvironments. First, quantification of Escherichia coli passage into human small bowel tissue, following Ussing chamber incubations exemplified objective quantification of rare events in the context of lumen-tissue crosstalk. Second, in rat jejenum, precise histological context revealed distinct populations of intraepithelial lymphocytes between and directly below enterocytes enabling quantification in context of total epithelial cell numbers. Finally, mouse mononuclear phagocyte-T cell interactions, cell expression and significant spatial cell congregations were mapped to shed light on cell-cell communication in lymphoid Peyer's patch. Accessible, quantitative tissue microscopy provides a new window-of-insight to diverse questions in gastroenterology. It can also help combat some of the data reproducibility crisis associated with antibody technologies and over-reliance on qualitative microscopy. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Gastroenterologia , Nódulos Linfáticos Agregados , Animais , Citometria de Fluxo , Humanos , Camundongos , Microscopia , Ratos , Reprodutibilidade dos Testes
16.
Cytometry A ; 97(4): 407-414, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32091180

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. While there are a number of well-recognized prognostic biomarkers at diagnosis, the most powerful independent prognostic factor is the response of the leukemia to induction chemotherapy (Campana and Pui: Blood 129 (2017) 1913-1918). Given the potential for machine learning to improve precision medicine, we tested its capacity to monitor disease in children undergoing ALL treatment. Diagnostic and on-treatment bone marrow samples were labeled with an ALL-discriminating antibody combination and analyzed by imaging flow cytometry. Ignoring the fluorescent markers and using only features extracted from bright-field and dark-field cell images, a deep learning model was able to identify ALL cells at an accuracy of >88%. This antibody-free, single cell method is cheap, quick, and could be adapted to a simple, laser-free cytometer to allow automated, point-of-care testing to detect slow early responders. Adaptation to other types of leukemia is feasible, which would revolutionize residual disease monitoring. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Leucemia , Aprendizado de Máquina , Criança , Computadores , Citometria de Fluxo , Humanos , Leucemia/diagnóstico , Neoplasia Residual
17.
Cytometry A ; 97(3): 253-258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31472007

RESUMO

Eosinophils are granular leukocytes that play a role in mediating inflammatory responses linked to infection and allergic disease. Their activation during an immune response triggers spatial reorganization and eventual cargo release from intracellular granules. Understanding this process is important in diagnosing eosinophilic disorders and in assessing treatment efficacy; however, current protocols are limited to simply quantifying the number of eosinophils within a blood sample. Given that high optical absorption and scattering by the granular structure of these cells lead to marked image features, the physical changes that occur during activation should be trackable using image analysis. Here, we present a study in which imaging flow cytometry is used to quantify eosinophil activation state, based on the extraction of 85 distinct spatial features from dark-field images formed by light scattered orthogonally to the illuminating beam. We apply diffusion mapping, a time inference method that orders cells on a trajectory based on similar image features. Analysis of exogenous cell activation using eotaxin and endogenous activation in donor samples with elevated eosinophil counts shows that cell position along the diffusion-path line correlates with activation level (99% confidence level). Thus, the diffusion mapping provides an activation metric for each cell. Assessment of activated and control populations using both this spatial image-based, activation score and the integrated side-scatter intensity shows an improved Fisher discriminant ratio rd = 0.7 for the multivariate technique compared with an rd = 0.47 for the traditional whole-cell scatter metric. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Eosinófilos , Citometria de Fluxo , Humanos , Contagem de Leucócitos
18.
Med Sci Sports Exerc ; 52(1): 259-266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436733

RESUMO

PURPOSE: (i) To develop an automated measurement technique for the assessment of both the form and intensity of physical activity undertaken by children during play. (ii) To profile the varying activity across a cohort of children using a multivariate analysis of their movement patterns. METHODS: Ankle-worn accelerometers were used to record 40 min of activity during a school recess, for 24 children over five consecutive days. Activity events of 1.1 s duration were identified within the acceleration time trace and compared with a reference motif, consisting of a single walking stride acceleration trace, obtained on a treadmill operating at a speed of 4 km h. Dynamic time warping of motif and activity events provided metrics of comparative movement duration and intensity, which formed the data set for multivariate mapping of the cohort activity using a principal component analysis (PCA). RESULTS: The two-dimensional PCA plot provided clear differentiation of children displaying diverse activity profiles and clustering of those with similar movement patterns. The first component of the PCA correlated to the integrated intensity of movement over the 40-min period, whereas the second component informed on the temporal phasing of activity. CONCLUSIONS: By defining movement events and then quantifying them by reference to a motion-standard, meaningful assessment of highly varied activity within free play can be obtained. This allows detailed profiling of individual children's activity and provides an insight on social aspects of play through identification of matched activity time profiles for children participating in conjoined play.


Assuntos
Comportamento Infantil/fisiologia , Exercício Físico/fisiologia , Movimento/fisiologia , Jogos e Brinquedos , Acelerometria/instrumentação , Tornozelo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Análise Multivariada , Análise de Componente Principal , Estudos de Tempo e Movimento
19.
Hum Mov Sci ; 68: 102523, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31683083

RESUMO

OBJECTIVE: While novel analytical methods have been used to examine movement behaviours, to date, no studies have examined whether a frequency-based measure, such a spectral purity, is useful in explaining key facets of human movement. The aim of this study was to investigate movement and gait quality, physical activity and motor competence using principal component analysis. METHODS: Sixty-five children (38 boys, 4.3 ±â€¯0.7y, 1.04 ±â€¯0.05 m, 17.8 ±â€¯3.2 kg, BMI; 16.2 ±â€¯1.9 kg∙m2) took part in this study. Measures included accelerometer-derived physical activity and movement quality (spectral purity), motor competence (Movement Assessment Battery for Children 2nd edition; MABC2), height, weight and waist circumference. All data were subjected to a principal component analysis, and the internal consistency of resultant components were assessed using Cronbach's alpha. RESULTS: Two principal components, with excellent internal consistency (Cronbach α >0.9) were found; the 1st principal component, termed "movement component", contained spectral purity, traffic light MABC2 score, fine motor% and gross motor% (α = 0.93); the 2nd principal component, termed "anthropometric component", contained weight, BMI, BMI% and body fat% (α = 0.91). CONCLUSION: The results of the present study demonstrate that accelerometric analyses can be used to assess motor competence in an automated manner, and that spectral purity is a meaningful, indicative, metric related to children's movement quality.


Assuntos
Exercício Físico/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Acelerometria/métodos , Antropometria/métodos , Peso Corporal/fisiologia , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Marcha/fisiologia , Humanos , Masculino , Análise de Componente Principal , Circunferência da Cintura
20.
Nat Commun ; 10(1): 2341, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138801

RESUMO

Understanding nanoparticle uptake by biological cells is fundamentally important to wide-ranging fields from nanotoxicology to drug delivery. It is now accepted that the arrival of nanoparticles at the cell is an extremely complicated process, shaped by many factors including unique nanoparticle physico-chemical characteristics, protein-particle interactions and subsequent agglomeration, diffusion and sedimentation. Sequentially, the nanoparticle internalisation process itself is also complex, and controlled by multiple aspects of a cell's state. Despite this multitude of factors, here we demonstrate that the statistical distribution of the nanoparticle dose per endosome is independent of the initial administered dose and exposure duration. Rather, it is the number of nanoparticle containing endosomes that are dependent on these initial dosing conditions. These observations explain the heterogeneity of nanoparticle delivery at the cellular level and allow the derivation of simple, yet powerful probabilistic distributions that accurately predict the nanoparticle dose delivered to individual cells across a population.


Assuntos
Endossomos/metabolismo , Nanopartículas/metabolismo , Células A549 , Transporte Biológico , Linhagem Celular , Endossomos/ultraestrutura , Ensaios de Triagem em Larga Escala , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA