Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(11): 6639-6650, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32353225

RESUMO

Lakes in the Midwest and Northeast United States are at risk of anthropogenic chloride contamination, but there is little knowledge of the prevalence and spatial distribution of freshwater salinization. Here, we use a quantile regression forest (QRF) to leverage information from 2773 lakes to predict the chloride concentration of all 49 432 lakes greater than 4 ha in a 17-state area. The QRF incorporated 22 predictor variables, which included lake morphometry characteristics, watershed land use, and distance to the nearest road and interstate. Model predictions had an r2 of 0.94 for all chloride observations, and an r2 of 0.86 for predictions of the median chloride concentration observed at each lake. The four predictors with the largest influence on lake chloride concentrations were low and medium intensity development in the watershed, crop density in the watershed, and distance to the nearest interstate. Almost 2000 lakes are predicted to have chloride concentrations above 50 mg L-1 and should be monitored. We encourage management and governing agencies to use lake-specific model predictions to assess salt contamination risk as well as to augment their monitoring strategies to more comprehensively protect freshwater ecosystems from salinization.


Assuntos
Ecossistema , Lagos , Cloretos , Monitoramento Ambiental , New England , Cloreto de Sódio
2.
Sci Data ; 4: 170101, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786983

RESUMO

Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

3.
Proc Natl Acad Sci U S A ; 114(17): 4453-4458, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396392

RESUMO

The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L-1), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.


Assuntos
Lagos/química , Salinidade , Cloreto de Sódio/química , Poluentes da Água/química , Estados Unidos , United States Environmental Protection Agency
4.
Sci Total Environ ; 592: 573-583, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325594

RESUMO

The Athabasca Oil Sands Region (AOSR) has been intensely developed for industrial bitumen extraction and upgrading since the 1980s. A paucity of environmental monitoring prior to development raises questions about baseline conditions in freshwater systems in the region and ecological responses to industrial activities. Further, climatic changes prompt questions about the relative roles of climate and industry in shaping aquatic ecosystems through time. We use aquatic bioindicators from multiple trophic levels, concentrations of petrogenic contaminants (dibenzothiophenes), and spectrally-inferred chlorophyll-a preserved in well-dated sediments of a closed-basin, shallow lake ~50km away from the main area of industry, in conjunction with climate observations, to assess how the biotic assemblages of a typical AOSR lake have changed during the past ~75years. We examine the contributions of the area's stressors in structuring aquatic communities. Increases in sedimentary measures of petrogenic contaminants provide clear evidence of aerial contaminant deposition from local industry since its establishment, while climate records demonstrate consistent warming and a recent period of reduced precipitation. Quantitative comparisons of biological assemblages from before and after the establishment of regional industry find significant (p<0.05) differences; however, the magnitude and overall timing of the changes are not consistent with a threshold-type shift in response to the onset of regional industry. Rather, biotic assemblages from multiple trophic levels suggest transitions to an increasingly complex benthic environment and relatively warmer waters, which, like the increasing trends in inferred primary production, are consistent with a changing climate. These findings highlight the important role of climate conditions in regulating primary production and structuring aquatic communities in these shallow systems.


Assuntos
Biota , Mudança Climática , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Alberta , Animais , Canadá , Chironomidae , Cladocera , Diatomáceas , Sedimentos Geológicos , Poluentes Químicos da Água
5.
PLoS One ; 11(5): e0153987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27135946

RESUMO

Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Lagos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...