Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 928353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844394

RESUMO

Introduction: The gut microbiome is an integral partner in host health and plays a role in immune development, altered nutrition, and pathogen prevention. The mycobiome (fungal microbiome) is considered part of the rare biosphere but is still a critical component in health. Next generation sequencing has improved our understanding of fungi in the gut, but methodological challenges remain. Biases are introduced during DNA isolation, primer design and choice, polymerase selection, sequencing platform selection, and data analyses, as fungal reference databases are often incomplete or contain erroneous sequences. Methods: Here, we compared the accuracy of taxonomic identifications and abundances from mycobiome analyses which vary among three commonly selected target gene regions (18S, ITS1, or ITS2) and the reference database (UNITE - ITS1, ITS2 and SILVA - 18S). We analyze multiple communities including individual fungal isolates, a mixed mock community created from five common fungal isolates found in weanling piglet feces, a purchased commercial fungal mock community, and piglet fecal samples. In addition, we calculated gene copy numbers for the 18S, ITS1, and ITS2 regions of each of the five isolates from the piglet fecal mock community to determine whether copy number affects abundance estimates. Finally, we determined the abundance of taxa from several iterations of our in-house fecal community to assess the effects of community composition on taxon abundance. Results: Overall, no marker-database combination consistently outperformed the others. Internal transcribed space markers were slightly superior to 18S in the identification of species in tested communities, but Lichtheimia corymbifera, a common member of piglet gut communities, was not amplified by ITS1 and ITS2 primers. Thus, ITS based abundance estimates of taxa in piglet mock communities were skewed while 18S marker profiles were more accurate. Kazachstania slooffiae displayed the most stable copy numbers (83-85) while L. corymbifera displayed significant variability (90-144) across gene regions. Discussion: This study underscores the importance of preliminary studies to assess primer combinations and database choice for the mycobiome sample of interest and raises questions regarding the validity of fungal abundance estimates.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Suínos , Micobioma/genética , Fungos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , DNA Fúngico/genética
2.
Front Vet Sci ; 10: 1303984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274656

RESUMO

As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.

3.
Sci Rep ; 12(1): 15080, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064754

RESUMO

The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Fezes/microbiologia , Fungos/genética , RNA Ribossômico 16S/genética , Saccharomycetales , Suínos
4.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35106579

RESUMO

Microbiome studies in animal science using 16S rRNA gene sequencing have become increasingly common in recent years as sequencing costs continue to fall and bioinformatic tools become more powerful and user-friendly. The combination of molecular biology, microbiology, microbial ecology, computer science, and bioinformatics-in addition to the traditional considerations when conducting an animal science study-makes microbiome studies sometimes intimidating due to the intersection of different fields. The objective of this review is to serve as a jumping-off point for those animal scientists less familiar with 16S rRNA gene sequencing and analyses and to bring up common issues and concerns that arise when planning an animal microbiome study from design through analysis. This review includes an overview of 16S rRNA gene sequencing, its advantages, and its limitations; experimental design considerations such as study design, sample size, sample pooling, and sample locations; wet lab considerations such as field handing, microbial cell lysis, low biomass samples, library preparation, and sequencing controls; and computational considerations such as identification of contamination, accounting for uneven sequencing depth, constructing diversity metrics, assigning taxonomy, differential abundance testing, and, finally, data availability. In addition to general considerations, we highlight some special considerations by species and sample type.


Assuntos
Microbiota , Animais , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/veterinária
5.
Front Physiol ; 13: 1057810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589448

RESUMO

The microbiome is an integral part of chicken health and can affect immunity, nutrient utilization, and performance. The role of bacterial microbiota members in host health is relatively well established, but less attention has been paid to fungal members of the gastrointestinal tract (GIT) community. However, human studies indicate that fungi play a critical role in health. Here, we described fungal communities, or mycobiomes, in both the lumen and mucosa of the chicken ileum and cecum from hatch through 14 days of age. We also assessed the effects of delayed access to feed immediately post-hatch (PH) on mycobiome composition, as PH feed delay is commonly associated with poor health performance. Chicken mycobiomes in each of the populations were distinct and changed over time. All mycobiomes were dominated by Gibberella, but Aspergillus, Cladosporium, Sarocladium, Meyerozyma, and Penicillium were also abundant. Relative abundances of some taxa differed significantly over time. In the cecal and ileal lumens, Penicillium was present in extremely low quantities or absent during days one and two and then increased over time. Meyerozyma and Wickerhamomyces also increased over time in luminal sites. In contrast, several highly abundant unclassified fungi decreased after days one and two, highlighting the need for improved understanding of fungal gut biology. Mycobiomes from chicks fed during the first 2 days PH versus those not fed during the first 2 days did not significantly differ, except during days one and two. Similarities observed among mycobiomes of fed and unfed chicks at later timepoints suggest that delays in PH feeding do not have long lasting effects on mycobiome composition. Together, these results provide a foundation for future mycobiome studies, and suggest that negative health and production impacts of delayed feeding are not likely related to the development of fungal populations in the GIT.

6.
Microbiol Resour Announc ; 10(34): e0019821, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435868

RESUMO

Kazachstania slooffiae is a dimorphic fungus which colonizes the feces and gastrointestinal tract of postweaning pigs. This fungus persists in the gut environment of piglets into adulthood and is implicated in porcine health through microbe-microbe and microbe-host interactions. Here, we report a draft genome sequence for K. slooffiae ABBL.

7.
J Fungi (Basel) ; 7(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671322

RESUMO

Kazachstania slooffiae is a fungus commonly isolated from the gastrointestinal tract and feces of post-weaning pigs. Studies have implicated its ability to positively alter piglet gut health through potential symbioses with beneficial bacteria, including Lactobacillus and Prevotella, in providing amino acids as an energy source for microbial and piglet growth, and it has been found to be positively correlated with short-chain fatty acids in the piglet gut. However, basic mycological information remains limited, hampering in vitro studies. In this study, we characterized the growth parameters, biofilm formation ability, susceptibility to antimicrobials, and genetic relatedness of K. slooffiae to other fungal isolates. Optimal fungal growth conditions were determined, no antifungal resistance was found against multiple classes of antifungal drugs (azoles, echinocandins, polyenes, or pyrimidine analogues), and dimorphic growth was observed. K. slooffiae produced biofilms that became more complex in the presence of Lactobacillus acidophilus supernatant, suggesting positive interactions with this bacterium in the gut, while Enterococcus faecalis supernatant decreased density, suggesting an antagonistic interaction. This study characterizes the in vitro growth conditions that are optimal for further studies of K. slooffiae, which is an important step in defining the role and interactions of K. slooffiae in the porcine gut environment.

8.
Microorganisms ; 8(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526857

RESUMO

Weaning is a period of environmental changes and stress that results in significant alterations to the piglet gut microbiome and is associated with a predisposition to disease, making potential interventions of interest to the swine industry. In other animals, interactions between the bacteriome and mycobiome can result in altered nutrient absorption and susceptibility to disease, but these interactions remain poorly understood in pigs. Recently, we assessed the colonization dynamics of fungi and bacteria in the gastrointestinal tract of piglets at a single time point post-weaning (day 35) and inferred interactions were found between fungal and bacterial members of the porcine gut ecosystem. In this study, we performed a longitudinal assessment of the fecal bacteriome and mycobiome of piglets from birth through the weaning transition. Piglet feces in this study showed a dramatic shift over time in the bacterial and fungal communities, as well as an increase in network connectivity between the two kingdoms. The piglet fecal bacteriome showed a relatively stable and predictable pattern of development from Bacteroidaceae to Prevotellaceae, as seen in other studies, while the mycobiome demonstrated a loss in diversity over time with a post-weaning population dominated by Saccharomycetaceae. The mycobiome demonstrated a more transient community that is likely driven by factors such as diet or environmental exposure rather than an organized pattern of colonization and succession evidenced by fecal sample taxonomic clustering with nursey feed samples post-weaning. Due to the potential tractability of the community, the mycobiome may be a viable candidate for potential microbial interventions that will alter piglet health and growth during the weaning transition.

9.
Front Microbiol ; 10: 2286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649634

RESUMO

Interactions between the bacteria and fungi in the gut microbiome can result in altered nutrition, pathogenicity of infection, and host development, making them a crucial component in host health. Associations between the mycobiome and bacteriome in the piglet gut, in the context of weaning, remain unknown. Weaning is a time of significant stress, dietary changes, microbial alterations, and a predisposition to infection. The loss of animal health and growth makes potential microbial interventions of interest to the swine industry. Recent studies have demonstrated the diversity and development of the microbiome in the gastrointestinal (GI) tract of piglets during weaning, resulting from the dietary and physiological changes. Despite these advances, the role of the mycobiota in piglet health and its contribution to overall microbiome development remains mostly unknown. In this study we investigated the bacteriome and the mycobiome after weaning in the GI tract organs and feces from 35-day old piglets. Following weaning, the α-diversity and amplicon sequence variants (ASVs) counts of the bacteriome increased, proximally to distally, from the stomach to the feces along the GI tract, while the mycobiome α-diversity and ASV counts were highest in the porcine stomach. ß-diversity analyses show distinct clusters based on organ type in the bacteriome and mycobiome, but dispersion remained relatively constant in the mycobiome between organ/fecal sites. Bacteroidetes, Firmicutes, and Epsilonbacteraeota were the most abundant bacterial phyla present in the GI tract and feces based on mean taxonomic composition with high variation of composition found in the stomach. In the mycobiome, the dominant phyla were Ascomycota and Basidiomycota, and the stomach mycobiome did not demonstrate the same high level of variation observed in the bacteriome. Potential interactions between genera were found in the lower piglet GI bacteriome and mycobiome with positive correlations found between the fungus, Kazachstania, and several bacterial species, including Lactobacillus. Aspergillus demonstrated negative correlations with the short chain fatty acid-producing bacteria Butyricoccus, Subdoligranulum, and Fusicatenibacter. This study demonstrates the distinct colonization dynamics between fungi and bacteria in the GI tract and feces of piglets directly following weaning and the potential interactions of these microbes in the porcine gut ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...