Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751556

RESUMO

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Assuntos
Selênio , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Cobre , Selênio/farmacologia , Oxirredução , Selenoproteínas/genética
2.
Inorg Chem ; 62(6): 2637-2651, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716427

RESUMO

Desferrioxamine (DFO) has long been considered the gold standard chelator for incorporating [89Zr]Zr4+ in radiopharmaceuticals for positron emission tomography (PET) imaging. To improve the stability of DFO with zirconium-89 and to expand its coordination sphere to enable binding of large therapeutic radiometals, we have synthesized the highest denticity DFO derivatives to date: dodecadentate DFO2 and DFO2p. In this study, we describe the synthesis and characterization of a novel DFO-based chelator, DFO2p, which is comprised of two DFO strands connected by an p-NO2-phenyl linker and therefore contains double the chelating moieties of DFO (potential coordination number up to 12 vs 6). The chelator DFO2p offers an optimized synthesis comprised of only a single reaction step and improves water solubility relative to DFO2, but the shorter linker reduces molecular flexibility. Both DFO2 and DFO2p, each with 6 potential hydroxamate ligands, are able to reach a more energetically favorable 8-coordinate environment for Zr(IV) than DFO. The zirconium(IV) coordination environment of these complexes were evaluated by a combination of density functional theory (DFT) calculations and synchrotron spectroscopy (extended X-ray absorption fine structure), which suggest the inner-coordination sphere of zirconium(IV) to be comprised of the outermost four hydroxamate ligands. These results also confirm a single Zr(IV) in each chelator, and the hydroxide ligands which complete the coordination sphere of Zr(IV)-DFO are absent from Zr(IV)-DFO2 and Zr(IV)-DFO2p. Radiochemical stability studies with zirconium-89 revealed the order of real-world stability to be DFO2 > DFO2p ≫ DFO. The zirconium-89 complexes of these new high-denticity chelators were found to be far more stable than DFO, and the decreased molecular flexibility of DFO2p, relative to DFO2, could explain its decreased stability, relative to DFO2.

3.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073854

RESUMO

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Clioquinol , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Cobre/química , Humanos , Íons , Metais , Oxiquinolina/química , Oxiquinolina/farmacologia , Fragmentos de Peptídeos , Solventes , Zinco
4.
Dalton Trans ; 51(27): 10361-10376, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766122

RESUMO

Copper(II) coordination by bis(cyclohexanone)oxalyldihydrazone (also known as cuprizone), resulting in the formation of an intensely coloured blue complex, was first reported over 70 years ago. The cuprizone reaction has been employed in colourimetric tests for the presence of trace levels of copper. Cuprizone administration in C57BL/6 mice also leads to demyelination over time - a consequence that appears to be due to copper dyshomeostasis - and this has led to use of cuprizone as the leading method for toxicant-induced generation of an animal model of demyelination since its first use in the 1960s. Despite broad interest in cuprizone and its ability to bind copper there have been relatively few studies to structurally characterize the copper coordination properties of this ligand. In the absence of an aqueous medium, such as neat alcohol, copper and cuprizone exclusively form an amorphous green precipitate. Under aqueous conditions, where a large excess of cuprizone (relative to copper) is present, the blue complex that is synonymous with copper-cuprizone coordination is predominantly formed. The blue and green copper-cuprizone products demonstrate poor solubility and present challenges for conventional structure characterization methods, such as X-ray crystallography or nuclear magnetic resonance spectroscopy. By combining mass spectrometry, X-ray absorption spectroscopy, computational chemistry, and other techniques, a self-consistent picture of the copper coordination structures of the blue and green complexes is revealed - confirming that the blue complex is in the Cu(III) state, containing two hydrolyzed cuprizone ligands per metal centre, while the green complex represents an extended oligomeric complex, comprised of repeating Cu(II) centres that lie 4.8 Å apart and are bridged by unhydrolyzed cuprizone donors.


Assuntos
Complexos de Coordenação , Doenças Desmielinizantes , Animais , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Cuprizona/efeitos adversos , Doenças Desmielinizantes/induzido quimicamente , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia por Absorção de Raios X
5.
J Sch Psychol ; 86: 32-48, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34051916

RESUMO

Bullying behavior is understood as a complex social phenomenon that includes many, and sometimes overlapping, bullying participant behaviors. The current study utilized latent profile analysis (LPA) at two time points approximately one year apart and examined what bullying participant behavior groups emerged based on students' reported levels of bullying, assisting, victimization, defending, and outsider behavior. Additionally, longitudinal latent profile analyses (LLPA) were utilized to examine potential changes in groups over time. Results suggested four groups found at two timepoints: (a) Uninvolved-Occasional Defending, with defending at a monthly rate and infrequent engagement in other behaviors; (b) Frequent Defending-Occasional Victimization, with monthly victimization and weekly defending behaviors; (c) Frequent Victimization-Occasional Broad Involvement, with weekly levels of victimization and monthly bullying, defending, and outsider behaviors; and (d) Frequent Broad Involvement, with weekly engagement in all of the bully participant behaviors (i.e., bullying, assisting, victimization, defending, and outsider behavior). The largest proportion of students (more than half) were in the Uninvolved-Occasional Defending group, which was also the most stable group over time. The smallest group (7%) was Frequent Broad Involvement, which was the least stable group over time, with students in this group typically moving to groups with at least occasional broad involvement of bullying participant behaviors. More male students than female students were in both broad involvement groups (i.e., Frequent Victimization-Occasional Broad Involvement; Frequent Broad Involvement) and more female students than male students, as well as more elementary students than secondary students, were in the Frequent Defending-Occasional Victimization group. The current study suggests that researchers should use caution when categorizing or conceptualizing simple bullying participant roles such as bully or victim, or even "bully-victim," especially if the other bullying participant behaviors are not assessed. Practitioners should develop interventions that capitalize on the high proportions of students engaging in some level of defending and account for the complex social ecology that suggests that students are engaging in complex overlapping patterns of bullying participant behaviors.


Assuntos
Bullying , Vítimas de Crime , Criança , Feminino , Humanos , Masculino , Instituições Acadêmicas , Meio Social , Estudantes
6.
Cell Rep ; 35(2): 108979, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852855

RESUMO

The deleterious effects of psychological stress on mainstream T lymphocytes are well documented. However, how stress impacts innate-like T cells is unclear. We report that long-term stress surprisingly abrogates both T helper 1 (TH1)- and TH2-type responses orchestrated by invariant natural killer T (iNKT) cells. This is not due to iNKT cell death because these cells are unusually refractory to stress-inflicted apoptosis. Activated iNKT cells in stressed mice exhibit a "split" inflammatory signature and trigger sudden serum interleukin-10 (IL-10), IL-23, and IL-27 spikes. iNKT cell dysregulation is mediated by cell-autonomous glucocorticoid receptor signaling and corrected upon habituation to predictable stressors. Importantly, under stress, iNKT cells fail to potentiate cytotoxicity against lymphoma or to reduce the burden of metastatic melanoma. Finally, stress physically spares mouse mucosa-associated invariant T (MAIT) cells but hinders their TH1-/TH2-type responses. The above findings are corroborated in human peripheral blood and hepatic iNKT/MAIT cell cultures. Our work uncovers a mechanism of stress-induced immunosuppression.


Assuntos
Neoplasias Hepáticas/imunologia , Linfoma/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Estresse Psicológico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linhagem Celular Tumoral , Doença Crônica , Corticosterona/farmacologia , Citotoxicidade Imunológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imobilização , Imunidade Inata , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Interleucinas/genética , Interleucinas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células T Invariantes Associadas à Mucosa/efeitos dos fármacos , Células T Invariantes Associadas à Mucosa/patologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/patologia , Metástase Neoplásica , Oxidopamina/farmacologia , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/patologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/patologia , Equilíbrio Th1-Th2
7.
Inorg Chem ; 59(23): 17443-17452, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33183002

RESUMO

Positron emission tomography (PET) using radiolabeled, monoclonal antibodies has become an effective, noninvasive method for tumor detection and is a critical component of targeted radionuclide therapy. Metal ion chelator and bacterial siderophore desferrioxamine (DFO) is the gold standard compound for incorporation of zirconium-89 in radiotracers for PET imaging because it is thought to form a stable chelate with [89Zr]Zr4+. However, DFO may not bind zirconium-89 tightly in vivo, with free zirconium-89 reportedly liberated into the bones of experimental mouse models. Although high bone uptake has not been observed to date in humans, this potential instability has been proposed to be related to the unsaturated coordination sphere of [89Zr]Zr-DFO, which is thought to consist of the 3 hydroxamate groups of DFO and 1 or 2 water molecules. In this study, we have used a combination of X-ray absorption spectroscopy and density functional theory (DFT) geometry optimization calculations to further probe the coordination chemistry of this complex in solution. We find the extended X-ray absorption fine structure (EXAFS) curve fitting of an aqueous solution of Zr(IV)-DFO to be consistent with an 8-coordinate Zr with oxygen ligands. DFT calculations suggest that the most energetically favorable Zr(IV) coordination environment in DFO likely consists of the 3 hydroxamate ligands from DFO, each with bidentate coordination, and 2 hydroxide ligands. Further EXAFS curve fitting provides additional support for this model. Therefore, we propose that the coordination sphere of Zr(IV)-DFO is most likely completed by 2 hydroxide ligands rather than 2 water molecules, forming Zr(DFO)(OH)2.

8.
Inorg Chem ; 59(23): 17519-17534, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226796

RESUMO

PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) is a small Cu(II)-binding drug that has been investigated in the treatment of neurodegenerative diseases, namely, Alzheimer's disease (AD). PBT2 is thought to be highly effective at crossing the blood-brain barrier and has been proposed to exert anti-Alzheimer's effects through the modulation of metal ion concentrations in the brain, specifically the sequestration of Cu(II) from amyloid plaques. However, despite promising initial results in animal models and in clinical trials where PBT2 was shown to improve cognitive function, larger-scale clinical trials did not find PBT2 to have a significant effect on the amyloid plaque burden compared with controls. We propose that the results of these clinical trials likely point to a more complex mechanism of action for PBT2 other than simple Cu(II) sequestration. To this end, herein we have investigated the solution chemistry of Cu(II) coordination by PBT2 primarily using X-ray absorption spectroscopy (XAS), high-energy-resolution fluorescence-detected XAS, and electron paramagnetic resonance. We propose that a novel bis-PBT2 Cu(II) complex with asymmetric coordination may coexist in solution with a symmetric four-coordinate Cu(II)-bis-PBT2 complex distorted from coplanarity. Additionally, PBT2 is a more flexible ligand than other 8HQs because it can act as both a bidentate and a tridentate ligand as well as coordinate Cu(II) in both 1:1 and 2:1 PBT2/Cu(II) complexes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Complexos de Coordenação/uso terapêutico , Cobre/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Deficiências na Proteostase/tratamento farmacológico , Animais , Quelantes/síntese química , Quelantes/química , Clioquinol/química , Clioquinol/uso terapêutico , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Humanos , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Espectroscopia por Absorção de Raios X
9.
Metallomics ; 12(12): 1979-1994, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33169753

RESUMO

8-Hydroxyquinolines (8HQs) comprise a family of metal-binding compounds that have been used or tested for use in numerous medicinal applications, including as treatments for bacterial infection, Alzheimer's disease, and cancer. Two key 8HQs, CQ (5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (2-(dimethylamino)methyl-5,7-dichloro-8-hydroxyquinoline), have drawn considerable interest and have been the focus of many studies investigating their in vivo properties. These drugs have been described as copper and zinc ionophores because they do not cause metal depletion, as would be expected for a chelation mechanism, but rather cellular accumulation of these ions. In studies of their anti-cancer properties, CQ has been proposed to elicit toxic intracellular copper accumulation and to trigger apoptotic cancer cell death through several possible pathways. In this study we used synchrotron X-ray fluorescence imaging, in combination with biochemical assays and light microscopy, to investigate 8HQ-induced alterations to metal ion homeostasis, as well as cytotoxicity and cell death. We used the bromine fluorescence from a bromine labelled CQ congener (5,7-dibromo-8-hydroxyquinoline; B2Q) to trace the intracellular localization of B2Q following treatment and found that B2Q crosses the cell membrane. We also found that 8HQ co-treatment with Cu(ii) results in significantly increased intracellular copper and significant cytotoxicity compared with 8HQ treatments alone. PBT2 was found to be more cytotoxic, but a weaker Cu(ii) ionophore than other 8HQs. Moreover, treatment of cells with copper in the presence of CQ or B2Q resulted in copper accumulation in the nuclei, while PBT2-guided copper was distributed near to the cell membrane. These results suggest that PBT2 may be acting through a different mechanism than that of other 8HQs to cause the observed cytotoxicity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/metabolismo , Oxiquinolina/análogos & derivados , Oxiquinolina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imagem Óptica , Ratos , Espectrometria por Raios X
10.
Inorg Chem ; 59(19): 13858-13874, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32936627

RESUMO

8-Hydroxyquinolines (8HQs) are a family of lipophilic metal ion chelators that have been used in a range of analytical and pharmaceutical applications over the last 100 years. More recently, CQ (clioquinol; 5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) have undergone clinical trials for the treatment of Alzheimer's disease and Huntington's disease. Because CQ and PBT2 appear to redistribute metals into cells, these compounds have been redefined as copper and zinc ionophores. Despite the attention surrounding the clinical trials and the clear link between 8HQs and metals, the fundamental solution chemistry of how these compounds bind divalent metals such as copper and zinc, as well as their mechanism(s) of action in mammalian systems, remains poorly understood. In this study, we used a combination of X-ray absorption spectroscopy (XAS), high-energy resolution fluorescence detected (HERFD) XAS, electron paramagnetic resonance (EPR), and UV-visible absorption spectroscopies to investigate the aqueous solution chemistry of a range of 8HQ derivatives. To circumvent the known solubility issues with 8HQ compounds and their complexes with Cu(II), and to avoid the use of abiological organic solvents, we have devised a surfactant buffer system to investigate these Cu(II) complexes in aqueous solution. Our study comprises the first comprehensive investigation of the Cu(II) complexes formed with many 8HQs of interest in aqueous solution, and it provides the first structural information on some of these complexes. We find that halogen substitutions in 8HQ derivatives appear to have little effect on the Cu(II) coordination environment; 5,7-dihalogenated 8HQ conformers all have a pseudo square planar Cu(II) bound by two quinolin-8-olate anions, in agreement with previous studies. Conversely, substituents in the 2-position of the 8HQ moiety appear to cause significant distortions from the typical square-planar-like coordination of most Cu(II)-bis-8HQ complexes, such that the 8HQ moieties in the Cu(II)-bis-8HQ complex are rotated approximately 30-40° apart in a "propeller-like" arrangement.

11.
Am J Gastroenterol ; 115(7): 1055-1065, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618656

RESUMO

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is an obesity-related disorder that is rapidly increasing in incidence and is considered the hepatic manifestation of the metabolic syndrome. The gut microbiome plays a role in metabolism and maintaining gut barrier integrity. Studies have found differences in the microbiota between NAFLD and healthy patients and increased intestinal permeability in patients with NAFLD. Fecal microbiota transplantation (FMT) can be used to alter the gut microbiome. It was hypothesized that an FMT from a thin and healthy donor given to patients with NAFLD would improve insulin resistance (IR), hepatic proton density fat fraction (PDFF), and intestinal permeability. METHODS: Twenty-one patients with NAFLD were recruited and randomized in a ratio of 3:1 to either an allogenic (n = 15) or an autologous (n = 6) FMT delivered by using an endoscope to the distal duodenum. IR was calculated by HOMA-IR, hepatic PDFF was measured by MRI, and intestinal permeability was tested using the lactulose:mannitol urine test. Additional markers of metabolic syndrome and the gut microbiota were examined. Patient visits occurred at baseline, 2, 6 weeks, and 6 months post-FMT. RESULTS: There were no significant changes in HOMA-IR or hepatic PDFF in patients who received the allogenic or autologous FMT. Allogenic FMT patients with elevated small intestinal permeability (>0.025 lactulose:mannitol, n = 7) at baseline had a significant reduction 6 weeks after allogenic FMT. DISCUSSION: FMT did not improve IR as measured by HOMA-IR or hepatic PDFF but did have the potential to reduce small intestinal permeability in patients with NAFLD.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Intestino Delgado , Hepatopatia Gordurosa não Alcoólica/terapia , Método Duplo-Cego , Duodenoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Permeabilidade
12.
Biochem Pharmacol ; 180: 114141, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652143

RESUMO

Over 200 million people worldwide are exposed to the human carcinogen, arsenic, in contaminated drinking water. In laboratory animals, arsenic and the essential trace element, selenium, can undergo mutual detoxification through the formation of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-, which undergoes biliary and fecal elimination. [(GS)2AsSe]-, formed in animal red blood cells (RBCs), sequesters arsenic and selenium, and slows the distribution of both compounds to peripheral tissues susceptible to toxic effects. In human RBCs, the influence of arsenic on selenium accumulation, and vice versa, is largely unknown. The study aims were to characterize arsenite (AsIII) and selenite (SeIV) uptake by human RBCs, to determine if SeIV and AsIII increase the respective accumulation of the other in human RBCs, and ultimately to determine if this occurs through the formation and sequestration of [(GS)2AsSe]-. 75SeIV accumulation was temperature and Cl--dependent, inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS) (IC50 1 ± 0.2 µM), and approached saturation at 30 µM, suggesting uptake is mediated by the erythrocyte anion-exchanger 1 (AE1 or Band 3, gene SLC4A1). HEK293 cells overexpressing AE1 showed concentration-dependent 75SeIV uptake. 73AsIII uptake by human RBCs was temperature-dependent, partly reduced by aquaglyceroporin 3 inhibitors, and not saturated. AsIII increased 75SeIV accumulation (in the presence of albumin) and SeIV increased 73AsIII accumulation in human RBCs. Near-edge X-ray absorption spectroscopy revealed the formation of [(GS)2AsSe]- in human RBCs exposed to both AsIII and SeIV. The sequestration of [(GS)2AsSe]- in human RBCs potentially slows arsenic distribution to susceptible tissues and could reduce arsenic-induced disease.


Assuntos
Arsenitos/sangue , Eritrócitos/metabolismo , Glutationa/sangue , Ácido Selenioso/sangue , Arsenitos/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Selenioso/farmacologia , Espectroscopia por Absorção de Raios X/métodos
13.
Otolaryngol Head Neck Surg ; 163(6): 1198-1201, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32571149

RESUMO

Our purpose was to assess the potential utility of narrowband imaging (NBI) as a tool in diagnosing and treating unknown primary oropharyngeal squamous cell carcinoma (OPSCC) in patients prior to diagnostic resection with transoral robotic surgery (TORS). Between 2016 and March 2019, 29 patients with carcinoma of unknown primary meeting inclusion criteria were identified and treated with TORS. NBI was used preoperatively in 9 of 29 patients. A suspected tumor site was delineated by NBI in 8 of 9 patients (89%). Of the patients imaged with NBI, 8 of 9 (89%) patients had a pathologically confirmed tumor following TORS, corresponding to the same 8 suspected tumor sites identified with NBI. In contrast, a primary tumor was localized following TORS in 15 of 20 (75%) patients not evaluated with NBI. Thus, we see NBI as a potentially useful tool for the diagnosis and management of p16+ carcinoma of unknown primary.Level of Evidence: IIb.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/cirurgia , Imagem de Banda Estreita , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/cirurgia , Procedimentos Cirúrgicos Robóticos , Inibidor p16 de Quinase Dependente de Ciclina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Desconhecidas
14.
Chem Biol Interact ; 327: 109162, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32524993

RESUMO

Hundreds of millions of people worldwide are exposed to unacceptable levels of carcinogenic inorganic arsenic. Animal models have shown that selenium and arsenic are mutually protective through the formation and elimination of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-. Consistent with this, human selenium deficiency in arsenic-endemic regions is associated with arsenic-induced disease, leading to the initiation of human selenium supplementation trials. In contrast to the protective effect observed in vivo, in vitro studies have suggested that selenite increases arsenite cellular retention and toxicity. This difference might be explained by the rapid conversion of selenite to selenide in vivo. In the current study, selenite did not protect the human hepatoma (HepG2) cell line against the toxicity of arsenite at equimolar concentrations, however selenide increased the IC50 by 2.3-fold. Cytotoxicity assays of arsenite + selenite and arsenite + selenide at different molar ratios revealed higher overall mutual antagonism of arsenite + selenide toxicity than arsenite + selenite. Despite this protective effect, in comparison to 75Se-selenite, HepG2 cells in suspension were at least 3-fold more efficient at accumulating selenium from reduced 75Se-selenide, and its accumulation was further increased by arsenite. X-ray fluorescence imaging of HepG2 cells also showed that arsenic accumulation, in the presence of selenide, was higher than in the presence of selenite. These results are consistent with a greater intracellular availability of selenide relative to selenite for protection against arsenite, and the formation and retention of a less toxic product, possibly [(GS)2AsSe]-.


Assuntos
Arsenitos/toxicidade , Substâncias Protetoras/farmacologia , Ácido Selenioso/farmacologia , Compostos de Selênio/farmacologia , Arsênio/metabolismo , Arsenitos/metabolismo , Células Hep G2 , Humanos , Inativação Metabólica/efeitos dos fármacos , Substâncias Protetoras/metabolismo , Radioisótopos/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Compostos de Selênio/metabolismo , Radioisótopos de Selênio/metabolismo
15.
Appl Clin Inform ; 11(2): 265-275, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32268390

RESUMO

BACKGROUND: UW Medicine was one of the first health systems to encounter and treat COVID-19 patients in the United States, starting in late February 2020. OBJECTIVE: Here we describe the rapid rollout of capabilities by UW Medicine Information Technology Services (ITS) to support our clinical response to the COVID-19 pandemic and provide recommendations for health systems to urgently consider, as they plan their own response to this and potentially other future pandemics. METHODS: Our recommendations include establishing a hospital incident command structure that includes tight integration with IT, creating automated dashboards for incident command, optimizing emergency communication to staff and patients, and preparing human resources, security, other policies, and equipment to support the transition of all nonessential staff to telework.We describe how UW Medicine quickly expanded telemedicine capabilities to include most primary care providers and increasing numbers of specialty providers. We look at how we managed expedited change control processes to quickly update electronic health records (EHR) with new COVID-19 laboratory and clinical workflows. We also examine the integration of new technology such as tele-intensive care (ICU) equipment and improved integration with teleconferencing software into our EHR. To support the rapid preparation for COVID-19 at other health systems, we include samples of the UW Medicine's COVID-19 order set, COVID-19 documentation template, dashboard metric categories, and a list of the top 10 things your health care IT organization can do now to prepare. CONCLUSION: The COVID-19 response requires new and expedited ways of approaching ITS support to clinical needs. UW Medicine ITS leadership hope that by quickly sharing our nimble response to clinical and operational requests, we can help other systems prepare to respond to this public health emergency.


Assuntos
Infecções por Coronavirus , Atenção à Saúde/organização & administração , Tecnologia da Informação , Informática Médica , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Comunicação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Sistemas de Apoio a Decisões Clínicas , Registros Eletrônicos de Saúde , Sistemas Pré-Pagos de Saúde , Humanos , Noroeste dos Estados Unidos , Pandemias/prevenção & controle , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Saúde Pública , SARS-CoV-2 , Telemedicina , Fluxo de Trabalho
16.
Inorg Chem ; 58(20): 13604-13618, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31273981

RESUMO

[NiFe]-hydrogenase enzymes catalyze the reversible oxidation of hydrogen at a bimetallic cluster and are used by bacteria and archaea for anaerobic growth and pathogenesis. Maturation of the [NiFe]-hydrogenase requires several accessory proteins to assemble and insert the components of the active site. The penultimate maturation step is the delivery of nickel to a primed hydrogenase enzyme precursor protein, a process that is accomplished by two nickel metallochaperones, the accessory protein HypA and the GTPase HypB. Recent work demonstrated that nickel is rapidly transferred to HypA from GDP-loaded HypB within the context of a protein complex in a nickel selective and unidirectional process. To investigate the mechanism of metal transfer, we examined the allosteric effects of nucleotide cofactors and partner proteins on the nickel environments of HypA and HypB by using a combination of biochemical, microbiological, computational, and spectroscopic techniques. We observed that loading HypB with either GDP or a nonhydrolyzable GTP analogue resulted in a similar nickel environment. In addition, interaction with a mutant version of HypA with disrupted nickel binding, H2Q-HypA, does not induce substantial changes to the HypB G-domain nickel site. Instead, the results demonstrate that HypB modifies the acceptor site of HypA. Analysis of a peptide maquette derived from the N-terminus of HypA revealed that nickel is predominately coordinated by atoms from the N-terminal Met-His motif. Furthermore, HypA is capable of two nickel-binding modes at the N-terminus, a HypB-induced mode and a binding mode that mirrors the peptide maquette. Collectively, these results reveal that HypB brings about changes in the nickel coordination of HypA, providing a mechanism for the HypB-dependent control of the acquisition and release of nickel by HypA.


Assuntos
Proteínas de Transporte/química , Complexos de Coordenação/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Níquel/química , Proteínas de Transporte/metabolismo , Complexos de Coordenação/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Níquel/metabolismo
17.
Brain Behav Immun ; 80: 793-804, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108170

RESUMO

Stress is known to impede certain host defense mechanisms, including those governed by conventional T lymphocytes. However, whether innate-like T lymphocytes, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, are impacted by stress is unclear. Herein, we report that prolonged psychological stress caused by physical confinement results in robust upregulation of T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), an immune checkpoint receptor that controls antitumor and antiviral immune responses. Elevated TIGIT expression was found not only on NK and conventional T cells, but also on iNKT and MAIT cells. Stress-provoked TIGIT upregulation was reversed through treatment with the glucocorticoid receptor (GR) antagonist RU486, but not with 6-hydroxydopamine that induces chemical sympathectomy. A Cre/Lox gene targeting model in which GR was ablated in cells expressing Lck under its proximal promoter revealed that TIGIT upregulation in stressed animals stems from direct GR signaling in T and iNKT cells. In fact, long-term oral administration of exogenous corticosterone (CS) to wild-type C57BL/6 (B6) mice was sufficient to increase TIGIT expression levels on T and iNKT cells. In vitro treatment with CS also potently and selectively upregulated TIGIT, but not CTLA-4 or LAG-3, on mouse iNKT and MAIT hybridomas. These results were recapitulated using primary hepatic iNKT and MAIT cells from wild-type B6 and B6.MAITCAST mice, respectively. Subjecting B6.MAITCAST mice to physical restraint also raised the frequency of TIGIT+ cells among hepatic MAIT cells in a GR-dependent manner. Finally, we found that TIGIT is similarly upregulated in a chronic variable stress model in which animals are exposed to unpredictable heterotypic stressors without developing habituation. Taken together, our findings link, for the first time to our knowledge, GR signaling to TIGIT expression. We propose that glucocorticoid hormones dampen immune responses, in part, by enhancing TIGIT expression across multiple critical subsets of effector lymphocytes, including innate-like T cells. Therefore, TIGIT may constitute an attractive target in immune-enhancing interventions for sustained physiological stress.


Assuntos
Células T Invariantes Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/metabolismo , Receptores Imunológicos/metabolismo , Estresse Psicológico/metabolismo , Animais , Feminino , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Glucocorticoides/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais , Estresse Psicológico/imunologia , Ativação Transcricional , Regulação para Cima
18.
Inorg Chem ; 58(9): 6294-6311, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013069

RESUMO

Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aß) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aß, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aß via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aß in vitro, there is still uncertainty surrounding Cu(II) coordination in Aß. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aß(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aß(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aß(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aß(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aß(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aß(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Histidina/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Fragmentos de Peptídeos/metabolismo , Espectroscopia por Absorção de Raios X
19.
Metallomics ; 11(3): 621-631, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30688331

RESUMO

Mercury is one of the most toxic elements threatening the biosphere, with levels steadily rising due to both natural and human activities. Selenium is an essential micronutrient, required for normal development and functioning of many organisms. While selenium is known to counteract mercury's toxicity under some conditions, to date information about the mercury-selenium relationship is fragmented and often controversial. As part of a systematic study of mercury and selenium interactions, zebrafish (Danio rerio) larvae (a model verterbrate) were exposed to methylmercury chloride or mercuric chloride. The influence of pre- and post-treatment of selenomethionine on the level and distribution of mercury and selenium in the brain and eye sections, as well as on toxicity, were examined. Selenomethionine treatment decreased the amount of maternally transfered mercury in the larval brain. Selenomethionine treatment prior to exposure to mercuric chloride increased both mercury and selenium levels in the brain but decreased their toxic effects. Conversely, methylmercury levels were not changed as a result of selenium pre-treatment, while toxicity was increased. Strikingly, both forms of mercury severely disrupted selenium metabolism, not only by depleting selenium levels due to formation of Hg-Se complexes, but also by blocking selenium transport into and out of tissues, suggesting that restoring normal selenium levels by treating the organism with selenium after mercury exposure may not be possible. Disruption of selenium metabolism by mercury may lead to disruption in function of selenoproteins. Indeed, the production of thyroid hormones by selenoprotein deiodinases was found to be severely impaired as a result of mercury exposure, with selenomethionine not always being a suitable source of selenium to restore thyroid hormone levels.


Assuntos
Larva/efeitos dos fármacos , Mercúrio/toxicidade , Selênio , Animais , Química Encefálica/efeitos dos fármacos , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/química , Larva/crescimento & desenvolvimento , Larva/metabolismo , Compostos de Metilmercúrio/toxicidade , Selênio/metabolismo , Selênio/fisiologia , Hormônios Tireóideos/metabolismo , Peixe-Zebra/metabolismo
20.
Mini Rev Med Chem ; 19(7): 569-590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30324878

RESUMO

Malaria is a potentially life-threatening disease, affecting approx. 214 million people worldwide. Malaria is caused by a protozoan, Plasmodium falciparum, which is transmitted through the Anopheles mosquito. Malaria treatment is becoming more challenging due to rising resistance against the antimalarial drug, chloroquine. Novel compounds that target aspects of parasite development are being explored in attempts to overcome this wide-spread problem. Anti-malarial drugs target specific aspects of parasite growth and development within the human host. One of the most effective targets is the inhibition of hematin formation, either through inhibition of cysteine proteases or through iron chelation. Metal-thiosemicarbazone (TSC) complexes have been tested for antimalarial efficacy against drug-sensitive and drug-resistant strains of P. falciparum. An array of TSC complexes with numerous transition metals, including ruthenium, palladium, and gold has displayed antiplasmodial activity. Au(I)- and Pd(II)-TSC complexes displayed the greatest potency; 4-amino-7-chloroquine moieties were also found to improve antiplasmodial activity of TSCs. Although promising metal-TSC drug candidates have been tested against laboratory strains of P. falciparum, problems arise when attempting to compare between studies. Future work should strive to completely characterize synthesized metal-TSC structures and assess antiplasmodial potency against several drug-sensitive and drugresistant strains. Future studies need to precisely determine IC50 values for antimalarial drugs, chloroquine and ferroquine, to establish accurate standard values. This will make future comparisons across studies more feasible and potentially help reveal structure-function relationships. Investigations that attempt to link drug structures or properties to antiplasmodial mechanism(s) of action will aid in the design of antimalarial drugs that may combat rising drug resistance.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Animais , Antimaláricos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Humanos , Modelos Moleculares , Tiossemicarbazonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...