Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Clin Diabetes Endocrinol ; 10(1): 32, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285502

RESUMO

BACKGROUND: Ceramides have recently been identified as novel biomarkers associated with diabetes mellitus (DM) and major adverse cardiac and cerebrovascular events (MACCE). This study aims to explore their utility in diagnosing microvascular disease. METHODS: This study prospectively enrolled 309 patients from 2018 to 2020 into three groups: healthy controls (Group 1, N = 51), DM patients without acute myocardial infarction (AMI) (Group 2, N = 150), and DM patients with AMI (Group 3, N = 108). We assessed outcomes using stress perfusion cardiac magnetic resonance (CMR) imaging for coronary microvascular disease (CMD) (Outcome 1), retinography for retinal microvascular disease (RMD) (Outcome 2), both CMD and RMD (Outcome 3), and absence of microvascular disease (w/o MD) (outcome 4). We evaluated the classification performance of ceramides using receiver operating characteristic (ROC) analysis and multiple logistic regression. 11-ceramide panel previously identified by our research group as related to macrovascular disease were used. RESULTS: Average glycated hemoglobin (HbA1c) values were 5.1% in Group 1, 8.3% in Group 2, and 7.6% in Group 3. Within the cohort, CMD was present in 59.5% of patients, RMD in 25.8%, both CMD and RMD in 18.8%, and w/o MD in 38.5%. The AUC values for the reference ceramide ratios were as follows: CMD at 0.66 (p = 0.012), RMD at 0.61 (p = 0.248), CMD & RMD at 0.64 (p = 0.282), and w/o MD at 0.67 (p = 0.010). In contrast, the AUC values using 11-ceramide panel showed significant improvement in the outcomes prediction: CMD at 0.81 (p = 0.001), RMD at 0.73 (p = 0.010), CMD & RMD at 0.73 (p = 0.04), and w/o MD at 0.83 (p = 0.010). Additionally, the plasma concentration of C14.0 was notably higher in the w/o MD group (p < 0.001). CONCLUSIONS: Plasma ceramides serve as potential predictors for health status and microvascular disease phenotypes in diabetic patients.

2.
Hepatology ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255518

RESUMO

BACKGROUND: HCC incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways driving MASH-HCC are poorly understood. We have previously reported that male mice with haploinsufficiency of hypoxia-associated factor, HAF (SART1+/-) spontaneously develop MASH-HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. RESULTS: We generated SART1-floxed mice, which were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS-/-) or myeloid cells (LysM-Cre, macS-/-). HepS-/- mice (both male and female) developed HCC associated with profound inflammatory and lipid dysregulation suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient hepatocytes showed decreased P-p65 and P-p50 and in many components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro. HAF depletion also triggered apoptosis, suggesting that HAF protects against HCC by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by regulating transcription of TRADD and RIPK1. Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but showed profound upregulation of these proteins after 40 weeks, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared with normal liver. CONCLUSIONS: HAF is novel transcriptional regulator of the NF-κB pathway and is a key determinant of cell fate during progression to MASH and MASH-HCC.

3.
Biochem Soc Trans ; 52(4): 1765-1776, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39082976

RESUMO

Like 'influencers' who achieve fame and power through social media, ceramides are low abundance members of communication platforms that have a mighty impact on their surroundings. Ceramide microdomains form within sphingolipid-laden lipid rafts that confer detergent resistance to cell membranes and serve as important signaling hubs. In cells exposed to excessive amounts of saturated fatty acids (e.g. in obesity), the abundance of ceramide-rich microdomains within these rafts increases, leading to concomitant alterations in cellular metabolism and survival that contribute to cardiometabolic disease. In this mini-review, we discuss the evidence supporting the formation of these ceramide microdomains and describe the spectrum of harmful ceramide-driven metabolic actions under the context of an evolutionary theory. Moreover, we discuss the proximal 'followers' of these ceramide media stars that account for the diverse intracellular actions that allow them to influence obesity-linked disease.


Assuntos
Ceramidas , Microdomínios da Membrana , Esfingolipídeos , Humanos , Microdomínios da Membrana/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Animais , Obesidade/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo
4.
Aging Cell ; 23(8): e14226, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38808779

RESUMO

Dysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone-releasing hormone knockout (GHRH-KO) female mice and their littermate controls. Employing a targeted lipidomic approach, we specifically investigated ceramide levels in GHRH-KO mice, a well-established model of enhanced longevity. While younger GHRH-KO mice did not exhibit notable differences in serum lipids, older counterparts demonstrated significant reductions in over one-third of the evaluated lipids. In employing the same analysis in liver tissue, GHRH-KO mice showed pronounced downregulation of numerous ceramides and hexosylceramides, which have been shown to elicit many of the tissue defects that accompany aging (e.g., insulin resistance, oxidative stress, and cell death). Additionally, gene expression analysis in the liver tissue of adult GHRH-KO mice identified substantial decreases in several ceramide synthesis genes, indicating that these alterations are, at least in part, attributed to GHRH-KO-induced transcriptional changes. These findings provide the first evidence of disrupted ceramide metabolism in a long-lived mammal. This study sheds light on the intricate connections between GH deficiency, ceramide levels, and the molecular mechanisms influencing lifespan extension.


Assuntos
Envelhecimento , Ceramidas , Hormônio Liberador de Hormônio do Crescimento , Camundongos Knockout , Animais , Ceramidas/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Camundongos , Envelhecimento/metabolismo , Feminino , Longevidade/genética , Fígado/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795827

RESUMO

Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). Profound alterations in lipid metabolism, including increases in fatty acid oxidation and transformation of the phospholipidome, occur in HCC with CTNNB1 mutations, but it is unclear what mechanisms give rise to these changes. We employed untargeted lipidomics and targeted isotope tracing to measure phospholipid synthesis activity in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid isotope tracing analysis in human cells revealed a reduction in phosphatidylcholine (PC) production rates as assayed by choline incorporation. We developed lipid isotope tracing analysis for zebrafish tumors and observed reductions in phosphatidylcholine synthesis by both the CDP-choline and PEMT pathways. The observed changes in the ß-catenin-driven HCC phospholipidome suggest that zebrafish can recapitulate conserved features of HCC lipid metabolism and may serve as a model for identifying future HCC-specific lipid metabolic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfatidilcolinas , Peixe-Zebra , beta Catenina , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Humanos , Animais , Fosfatidilcolinas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/genética , Animais Geneticamente Modificados , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Lipidômica/métodos
6.
Mol Genet Metab Rep ; 39: 101077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595987

RESUMO

Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.

7.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659908

RESUMO

Mechanical unloading and circulatory support with left ventricular assist devices (LVADs) mediate significant myocardial improvement in a subset of advanced heart failure (HF) patients. The clinical and biological phenomena associated with cardiac recovery are under intensive investigation. Left ventricular (LV) apical tissue, alongside clinical data, were collected from HF patients at the time of LVAD implantation (n=208). RNA was isolated and mRNA transcripts were identified through RNA sequencing and confirmed with RT-qPCR. To our knowledge this is the first study to combine transcriptomic and clinical data to derive predictors of myocardial recovery. We used a bioinformatic approach to integrate 59 clinical variables and 22,373 mRNA transcripts at the time of LVAD implantation for the prediction of post-LVAD myocardial recovery defined as LV ejection fraction (LVEF) ≥40% and LV end-diastolic diameter (LVEDD) ≤5.9cm, as well as functional and structural LV improvement independently by using LVEF and LVEDD as continuous variables, respectively. To substantiate the predicted variables, we used a multi-model approach with logistic and linear regressions. Combining RNA and clinical data resulted in a gradient boosted model with 80 features achieving an AUC of 0.731±0.15 for predicting myocardial recovery. Variables associated with myocardial recovery from a clinical standpoint included HF duration, pre-LVAD LVEF, LVEDD, and HF pharmacologic therapy, and LRRN4CL (ligand binding and programmed cell death) from a biological standpoint. Our findings could have diagnostic, prognostic, and therapeutic implications for advanced HF patients, and inform the care of the broader HF population.

8.
EBioMedicine ; 101: 105024, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412638

RESUMO

BACKGROUND: Altered lipid metabolism is a hallmark of cancer development. However, the role of specific lipid metabolites in colorectal cancer development is uncertain. METHODS: In a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined associations between pre-diagnostic circulating concentrations of 97 lipid metabolites (acylcarnitines, glycerophospholipids and sphingolipids) and colorectal cancer risk. Circulating lipids were measured using targeted mass spectrometry in 1591 incident colorectal cancer cases (55% women) and 1591 matched controls. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between concentrations of individual lipid metabolites and metabolite patterns with colorectal cancer risk. FINDINGS: Of the 97 assayed lipids, 24 were inversely associated (nominally p < 0.05) with colorectal cancer risk. Hydroxysphingomyelin (SM (OH)) C22:2 (ORper doubling 0.60, 95% CI 0.47-0.77) and acylakyl-phosphatidylcholine (PC ae) C34:3 (ORper doubling 0.71, 95% CI 0.59-0.87) remained associated after multiple comparisons correction. These associations were unaltered after excluding the first 5 years of follow-up after blood collection and were consistent according to sex, age at diagnosis, BMI, and colorectal subsite. Two lipid patterns, one including 26 phosphatidylcholines and all sphingolipids, and another 30 phosphatidylcholines, were weakly inversely associated with colorectal cancer. INTERPRETATION: Elevated pre-diagnostic circulating levels of SM (OH) C22:2 and PC ae C34:3 and lipid patterns including phosphatidylcholines and sphingolipids were associated with lower colorectal cancer risk. This study may provide insight into potential links between specific lipids and colorectal cancer development. Additional prospective studies are needed to validate the observed associations. FUNDING: World Cancer Research Fund (reference: 2013/1002); European Commission (FP7: BBMRI-LPC; reference: 313010).


Assuntos
Neoplasias Colorretais , Humanos , Feminino , Masculino , Estudos Prospectivos , Fatores de Risco , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Esfingolipídeos , Fosfatidilcolinas/metabolismo
9.
Physiol Rev ; 104(3): 1061-1119, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300524

RESUMO

Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.


Assuntos
Doenças Cardiovasculares , Ceramidas , Ceramidas/metabolismo , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/metabolismo
10.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260413

RESUMO

Background: Hepatocellular carcinoma (HCC) incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways that lead to MASH-HCC are poorly understood. We have previously reported that male mice with global haploinsufficiency of hypoxia-associated factor, HAF ( SART1 +/ - ) spontaneously develop MASH/HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. Results: SART1 -floxed mice were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS -/- ) or macrophages (LysM-Cre, macS -/- ). Only hepS -/- mice (both male and female) developed HCC suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient macrophages showed decreased P-p65 and P-p50 and in many major components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro . HAF depletion increased apoptosis both in vitro and in vivo , suggesting that HAF mediates a tumor suppressor role by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by controlling transcription of TRADD and RIPK1 . Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but manifest profound upregulation of HAF, P-65 and TRADD within their livers after 40 weeks of HFD, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared to normal liver. Conclusions: HAF is novel transcriptional regulator of the NF-κB pathway that protects against hepatocyte apoptosis and is a key determinant of cell fate during progression to MASH and MASH-HCC.

11.
J Multidiscip Healthc ; 17: 339-351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284120

RESUMO

Purpose: The objective of this study was to conduct a secondary data analysis of clinical information documented in the electronic medical record to assess the clinical outcomes of patients who received three different treatment approaches on clinical outcomes for treatment of patients with anorexia nervosa (AN). Patients and methods: Historical electronic medical record (EMR) data on patients aged 6 to 80 years diagnosed with AN seen in a healthcare system between 2007 and 2017 were stratified, according to services received, into three groups: Group A (n = 48) received hospital-based services; Group B (n = 290) saw one or two provider types; Group C (n = 26) received outpatient coordinated multidisciplinary care from three provider types. Clinical outcomes [body mass index for adults (BMI), body mass index percentile (BMI%ile) for pediatric patients] defined AN severity and weight restoration. EMR data were analyzed using a generalized mixed-effects model and a Markov Transition model to examine the odds of weight restoration and the change in odds of weight restoration across the number of provider visits, respectively. Results: Patients receiving coordinated multidisciplinary care had significantly higher odds of weight restoration compared with patients receiving hospital-based services only (OR = 3.76, 95% CI [1.04, 13.54], p = 0.042). In addition, patients receiving care from 1 to 2 providers (OR = 1.006, 95% CI [1.003, 1.010], p = 0.001) or receiving coordinated multidisciplinary care (OR = 1.005, 95% CI [1.001, 1.011], p = 0.021) had significantly higher odds of weight restoration per provider visit day compared with patients receiving hospital-based services only. Conclusion: This retrospective chart review supports the coordinated, multidisciplinary care model for the weight restoration in patients with AN in an outpatient setting.

13.
J Lipid Res ; 64(12): 100471, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944753

RESUMO

Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.


Assuntos
Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Feminino , Humanos , Camundongos , Animais , Lipoproteínas/genética , Locos de Características Quantitativas/genética , Fenótipo , Lipoproteínas VLDL
14.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37904922

RESUMO

Background and Aims: Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). HCC with CTNNB1 mutations show profound alterations in lipid metabolism including increases in fatty acid oxidation and transformation of the phospholipidome, but it is unclear how these changes arise and whether they contribute to the oncogenic program in HCC. Methods: We employed untargeted lipidomics and targeted isotope tracing to quantify phospholipid production fluxes in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. Results: In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid flux analysis in human cells revealed a large reduction in phosphatidylcholine (PC) production rates as assayed by choline tracer incorporation. We developed isotope tracing lipid flux analysis for zebrafish and observed similar reductions in phosphatidylcholine synthesis flux accomplished by sex-specific mechanisms. Conclusions: The integration of isotope tracing with lipid abundances highlights specific lipid class transformations downstream of ß-catenin signaling in HCC and suggests future HCC-specific lipid metabolic targets.

15.
Sci Rep ; 13(1): 17322, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833312

RESUMO

Intermittent fasting (IF) is associated with enormous metabolic alterations that underpin its diverse health effects. Changes in lipid metabolism, particularly ceramides, and other sphingolipids, are among the most notable of these alterations. This study investigated the lipidomic alterations associated with 29-30 days of Ramadan diurnal intermittent fasting (RIF) in metabolically healthy overweight and obese subjects. A prospective cohort of 57 overweight and obese adults (70% males, 38.4 ± 11.2 years), with an age range of 18-58 years was observed prior to and at the conclusion of Ramadan. At both time points, anthropometric, biochemical (lipid profile, glycemic, and inflammatory markers), and dietary intake measurements were taken. Using liquid chromatography-mass spectrometry, a lipidomic analysis of ceramides and other sphingolipids was conducted. Using paired sample t-tests, pre- and post-Ramadan anthropometric, biochemical, and dietary values were compared. RIF was associated with improved levels of lipid profile compartments and inflammatory markers. In addition, RIF was associated with a decrease in plasma sphingosine and sphinganine, which was accompanied by a decrease in sphingosine 1-phosphate and sphinganine 1-phosphate. In addition, RIF was associated with decreased C17, C22, and C24 sphingomyelin, but not C14, C16, C18, C20, and C24:1 sphingomyelin, as well as C20, C22, C24, and C24:1 dihydrosphingomyelin, but not C16 and C18 dihydrosphingomyelin. This study demonstrates that RIF is associated with improvements in plasma sphingosine, sphinganine sphingomyelin, and dihydrosphingomyelin lipid species, as well as improved lipid profile and inflammatory markers, which may confer short-term protection against cardiometabolic problems in patients with overweight/obesity.


Assuntos
Ceramidas , Esfingolipídeos , Masculino , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Feminino , Esfingomielinas , Esfingosina , Sobrepeso , Lipidômica , Jejum Intermitente , Estudos Prospectivos , Obesidade , Jejum
16.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
17.
J Nutr ; 153(10): 2915-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652286

RESUMO

BACKGROUND: Metabolic diseases are often associated with muscle atrophy and heightened inflammation. The whey bioactive compound, glycomacropeptide (GMP), has been shown to exhibit anti-inflammatory properties and therefore may have potential therapeutic efficacy in conditions of skeletal muscle inflammation and atrophy. OBJECTIVES: The purpose of this study was to determine the role of GMP in preventing lipotoxicity-induced myotube atrophy and inflammation. METHODS: C2C12 myoblasts were differentiated to determine the effect of GMP on atrophy and inflammation and to explore its mechanism of action in evaluating various anabolic and catabolic cellular signaling nodes. We also used a lipidomic analysis to evaluate muscle sphingolipid accumulation with the various treatments. Palmitate (0.75 mM) in the presence and absence of GMP (5 µg/mL) was used to induce myotube atrophy and inflammation and cells were collected over a time course of 6-24 h. RESULTS: After 24 h of treatment, GMP prevented the palmitate-induced decrease in the myotube area and myogenic index and the increase in the TLR4-mediated inflammatory genes tumor necrosis factor-α and interleukin 1ß. Moreover, phosphorylation of Erk1/2, and gene expression of myostatin, and the E3 ubiquitin ligases, FBXO32, and MuRF1 were decreased with GMP treatment. GMP did not alter palmitate-induced ceramide or diacylglycerol accumulation, muscle insulin resistance, or protein synthesis. CONCLUSIONS: In summary, GMP prevented palmitate-induced inflammation and atrophy in C2C12 myotubes. The GMP protective mechanism of action in muscle cells during lipotoxic stress may be related to targeting catabolic signaling associated with cellular stress and proteolysis but not protein synthesis.


Assuntos
Palmitatos , Soro do Leite , Humanos , Soro do Leite/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Fragmentos de Peptídeos , Inflamação/metabolismo
18.
Cancer Epidemiol Biomarkers Prev ; 32(10): 1356-1364, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37590895

RESUMO

BACKGROUND: Individuals diagnosed with an obesity-related cancer (ORC survivors) are at an elevated risk of incident diabetes compared with cancer-free individuals, but whether this confers survival disadvantage is unknown. METHODS: We assessed the rate of incident diabetes in ORC survivors and evaluated the association of incident diabetes with all-cause and cancer-specific mortality among females with ORC in the Women's Health Initiative cohort (N = 14,651). Cox proportional hazards regression models stratified by exposure-risk periods (0-1, >1-3, >3-5, >5-7, and >7-10 years) from ORC diagnosis and time-varying exposure (diabetes) analyses were performed. RESULTS: Among the ORC survivors, a total of 1.3% developed diabetes within ≤1 year of follow-up and 2.5%, 2.3%, 2.3%, and 3.6% at 1-3, 3-5, 5-7, and 7-10 years of follow-up, respectively, after an ORC diagnosis. The median survival for those diagnosed with diabetes within 1-year of cancer diagnosis and those with no diabetes diagnosis in that time frame was 8.8 [95% confidence interval (CI), 7.0-14.5) years and 16.6 (95% CI, 16.1-17.0) years, respectively. New-onset compared with no diabetes as a time-varying exposure was associated with higher risk of all-cause (HR, 1.27; 95% CI, 1.16-1.40) and cancer-specific (HR, 1.17; 95% CI, 0.99-1.38) mortality. When stratified by exposure-risk periods, incident diabetes in ≤1 year of follow-up was associated with higher all-cause (HR, 1.76; 95% CI, 1.40-2.20) and cancer-specific (HR0-1, 1.82; 95% CI, 1.28-2.57) mortality, compared with no diabetes diagnosis. CONCLUSIONS: Incident diabetes was associated with worse cancer-specific and all-cause survival, particularly in the year after cancer diagnosis. IMPACT: These findings draw attention to the importance of diabetes prevention efforts among cancer survivors to improve survival outcomes.


Assuntos
Diabetes Mellitus , Neoplasias , Feminino , Humanos , Fatores de Risco , Saúde da Mulher , Obesidade/complicações , Obesidade/epidemiologia , Diabetes Mellitus/epidemiologia , Modelos de Riscos Proporcionais , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/complicações
19.
Elife ; 122023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417957

RESUMO

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Assuntos
Glucose , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Glucose/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Jejum/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Flavoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA