Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(9): 4642-4652, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071231

RESUMO

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.


Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Trofoblastos/efeitos dos fármacos , Animais , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Trofoblastos/metabolismo
2.
Curr Protoc Plant Biol ; 4(1): e20085, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30489018

RESUMO

Flavonoids are a class of specialized metabolites found in many different plant species. They protect against UV radiation, scavenge reactive oxygen species, are involved in plant defense responses, and are associated with plant-microorganism interactions. They have also been reported to possess health-promoting effects including anti-inflammatory, antioxidant, anticancer activity, and antihypertensive effects. Flavonoids encompass >10,000 structures where the types and amounts depend on the plant species, developmental stage, organ, and growth conditions. The diversity of flavonoid structures represents a significant challenge in the analysis of plant flavonoids. Many analytical techniques have been developed to detect and quantify flavonoids, and the most productive of these techniques use liquid chromatography (LC) coupled to mass spectrometry (MS) to analyze flavonoids due to the excellent combination of selectivity and sensitivity of MS. In addition, mass spectral libraries have been constructed to further aid flavonoid identification. Here, the use of ultra-high pressure liquid chromatography coupled to mass spectrometry (UHPLC-MS) in plant flavonoid analyses, with an emphasis on sample extraction, flavonoid separation, and MS detection, is described. © 2018 by John Wiley & Sons, Inc.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Plantas/química , Espectrometria de Massas em Tandem/métodos , Análise de Dados , Flavonoides/química , Flavonoides/isolamento & purificação , Espectrofotometria Ultravioleta
3.
Metabolites ; 8(4)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249055

RESUMO

UHPLC-MS-based non-targeted metabolomics was used to investigate the biochemical basis of pecan scab resistance. Two contrasting pecan varieties, Kanza (scab-resistant) and Pawnee (scab-susceptible), were profiled and the metabolomics data analyzed using multivariate statistics. Significant qualitative and quantitative metabolic differences were observed between the two varieties. Both varieties were found to have some unique metabolites. Metabolites that were only present or more abundant in Kanza relative to Pawnee could potentially contribute to the scab resistance in Kanza. Some of these metabolites were putatively identified as quercetin derivatives using tandem mass spectrometry. This suggests that quercetin derivatives could be important to pecan scab resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...