Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Obesity (Silver Spring) ; 32(5): 857-870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426232

RESUMO

OBJECTIVE: Big Data are increasingly used in obesity and nutrition research to gain new insights and derive personalized guidance; however, this data in raw form are often not usable. Substantial preprocessing, which requires machine learning (ML), human judgment, and specialized software, is required to transform Big Data into artificial intelligence (AI)- and ML-ready data. These preprocessing steps are the most complex part of the entire modeling pipeline. Understanding the complexity of these steps by the end user is critical for reducing misunderstanding, faulty interpretation, and erroneous downstream conclusions. METHODS: We reviewed three popular obesity/nutrition Big Data sources: microbiome, metabolomics, and accelerometry. The preprocessing pipelines, specialized software, challenges, and how decisions impact final AI- and ML-ready products were detailed. RESULTS: Opportunities for advances to improve quality control, speed of preprocessing, and intelligent end user consumption were presented. CONCLUSIONS: Big Data have the exciting potential for identifying new modifiable factors that impact obesity research. However, to ensure accurate interpretation of conclusions arising from Big Data, the choices involved in preparing AI- and ML-ready data need to be transparent to investigators and clinicians relying on the conclusions.

2.
Pediatr Res ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509226

RESUMO

BACKGROUND: Gut-derived metabolites, products of microbial and host co-metabolism, may inform mechanisms underlying children's neurodevelopment. We investigated whether infant fecal metabolites were related to toddler social behavior. METHODS: Stool samples collected from 6-week-olds (n = 86) and 1-year-olds (n = 209) in the New Hampshire Birth Cohort Study (NHBCS) were analyzed using nuclear magnetic resonance spectroscopy metabolomics. Autism-related behavior in 3-year-olds was assessed by caregivers using the Social Responsiveness Scale (SRS-2). To assess the association between metabolites and SRS-2 scores, we used a traditional single-metabolite approach, quantitative metabolite set enrichment (QEA), and self-organizing maps (SOMs). RESULTS: Using a single-metabolite approach and QEA, no individual fecal metabolite or metabolite set at either age was associated with SRS-2 scores. Using the SOM method, fecal metabolites of six-week-olds organized into four profiles, which were unrelated to SRS-2 scores. In 1-year-olds, one of twelve fecal metabolite profiles was associated with fewer autism-related behaviors, with SRS-2 scores 3.4 (95%CI: -7, 0.2) points lower than the referent group. This profile had higher concentrations of lactate and lower concentrations of short chain fatty acids than the reference. CONCLUSIONS: We uncovered metabolic profiles in infant stool associated with subsequent social behavior, highlighting one potential mechanism by which gut bacteria may influence neurobehavior. IMPACT: Differences in host and microbial metabolism may explain variability in neurobehavioral phenotypes, but prior studies do not have consistent results. We applied three statistical techniques to explore fecal metabolite differences related to social behavior, including self-organizing maps (SOMs), a novel machine learning algorithm. A 1-year-old fecal metabolite pattern characterized by high lactate and low short-chain fatty acid concentrations, identified using SOMs, was associated with social behavior less indicative of autism spectrum disorder. Our findings suggest that social behavior may be related to metabolite profiles and that future studies may uncover novel findings by applying the SOM algorithm.

3.
Front Nutr ; 10: 1144131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528997

RESUMO

Goal: Body mass index (BMI) in early pregnancy is a critical risk factor for hypertensive disorders of pregnancy (HDP). The pathobiology of the interplay between BMI and HDP is not fully understood and represents the focus of this investigation. Methods: BMI and 1st-trimester serum samples were obtained from the Global Alliance to Prevent Prematurity and Stillbirth repository for 154 women (105 without HDP and 49 with HDP). Metabotyping was conducted using ultra-high-performance liquid-chromatography high-resolution mass spectrometry (UHPLC HR-MS). Multivariable linear regression and logistic models were used to determine metabolites and pathway perturbations associated with BMI in women with and without HDP, and to determine metabolites and pathway perturbations associated with HDP for women in categories of obese, overweight, and normal weight based on the 1st trimester BMI. These outcome-associated signals were identified or annotated by matching against an in-house physical standards library and public database. Pathway analysis was conducted by the Mummichog algorithm in MetaboAnalyst. Result: Vitamin D3 and lysine metabolism were enriched to associate with BMI for women with and without HDP. Tryptophan metabolism enrichment was associated with HDP in all the BMI categories. Pregnant women who developed HDP showed more metabolic perturbations with BMI (continuous) than those without HDP in their 1st-trimester serum. The HDP-associated pathways for women with normal weight indicated inflammation and immune responses. In contrast, the HDP-associated pathways for women of overweight and obese BMI indicated metabolic syndromes with disorders in glucose, protein, and amino acid, lipid and bile acid metabolism, and oxidative and inflammatory stress. Conclusion: High first-trimester BMI indicates underlying metabolic syndromes, which play critical roles in HDP development. Vitamin D3 and tryptophan metabolism may be the targets to guide nutritional interventions to mitigate metabolic and inflammatory stress in pregnancy and reduce the onset of HDP.

4.
Metabolites ; 13(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512560

RESUMO

Caloric restriction and aerobic and resistance exercise are safe and effective lifestyle interventions for achieving weight loss in the obese older population (>65 years) and may improve physical function and quality of life. However, individual responses are heterogeneous. Our goal was to explore the use of untargeted metabolomics to identify metabolic phenotypes associated with achieving weight loss after a multi-component weight loss intervention. Forty-two older adults with obesity (body mass index, BMI, ≥30 kg/m2) participated in a six-month telehealth-based weight loss intervention. Each received weekly dietitian visits and twice-weekly physical therapist-led group strength training classes with a prescription for aerobic exercise. We categorized responders' weight loss using a 5% loss of initial body weight as a cutoff. Baseline serum samples were analyzed to determine the variable importance to the projection (VIP) of signals that differentiated the responder status of metabolic profiles. Pathway enrichment analysis was conducted in Metaboanalyst. Baseline data did not differ significantly. Weight loss was 7.2 ± 2.5 kg for the 22 responders, and 2.0 ± 2.0 kg for the 20 non-responders. Mummichog pathway enrichment analysis revealed that perturbations were most significant for caffeine and caffeine-related metabolism (p = 0.00028). Caffeine and related metabolites, which were all increased in responders, included 1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, fold change (FC) = 1.9), theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028, FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-methyluracil (VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023, FC = 2.3), and 1,7-dimethyl uric acid (VIP = 2.0, p = 0.035, FC = 2.2). Increased levels of phytochemicals and microbiome-related metabolites were also found in responders compared to non-responders. In this pilot weight loss intervention, older adults with obesity and evidence of significant enrichment for caffeine metabolism were more likely to achieve ≥5% weight loss. Further studies are needed to examine these associations in prospective cohorts and larger randomized trials.

5.
Front Pharmacol ; 14: 1136317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063293

RESUMO

ClpP activators ONC201 and related small molecules (TR compounds, Madera Therapeutics), have demonstrated significant anti-cancer potential in vitro and in vivo studies, including clinical trials for refractory solid tumors. Though progress has been made in identifying specific phenotypic outcomes following ClpP activation, the exact mechanism by which ClpP activation leads to broad anti-cancer activity has yet to be fully elucidated. In this study, we utilized a multi-omics approach to identify the ClpP-dependent proteomic, transcriptomic, and metabolomic changes resulting from ONC201 or the TR compound TR-57 in triple-negative breast cancer cells. Applying mass spectrometry-based methods of proteomics and metabolomics, we identified ∼8,000 proteins and 588 metabolites, respectively. From proteomics data, 113 (ONC201) and 191 (TR-57) proteins significantly increased and 572 (ONC201) and 686 (TR-57) proteins significantly decreased in this study. Gene ontological (GO) analysis revealed strong similarities between proteins up- or downregulated by ONC201 or TR-57 treatment. Notably, this included the downregulation of many mitochondrial processes and proteins, including mitochondrial translation and mitochondrial matrix proteins. We performed a large-scale transcriptomic analysis of WT SUM159 cells, identifying ∼7,700 transcripts (746 and 1,100 significantly increasing, 795 and 1,013 significantly decreasing in ONC201 and TR-57 treated cells, respectively). Less than 21% of these genes were affected by these compounds in ClpP null cells. GO analysis of these data demonstrated additional similarity of response to ONC201 and TR-57, including a decrease in transcripts related to the mitochondrial inner membrane and matrix, cell cycle, and nucleus, and increases in other nuclear transcripts and transcripts related to metal-ion binding. Comparison of response between both compounds demonstrated a highly similar response in all -omics datasets. Analysis of metabolites also revealed significant similarities between ONC201 and TR-57 with increases in α-ketoglutarate and 2-hydroxyglutaric acid and decreased ureidosuccinic acid, L-ascorbic acid, L-serine, and cytidine observed following ClpP activation in TNBC cells. Further analysis identified multiple pathways that were specifically impacted by ClpP activation, including ATF4 activation, heme biosynthesis, and the citrulline/urea cycle. In summary the results of our studies demonstrate that ONC201 and TR-57 induce highly similar and broad effects against multiple mitochondrial processes required for cell proliferation.

6.
Metabolites ; 12(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208242

RESUMO

Dysregulation of cellular metabolism is now a well-recognized hallmark of cancer. Studies investigating the metabolic features of cancer cells have shed new light onto processes in cancer cell biology and have identified many potential novel treatment options. The advancement of mass spectrometry-based metabolomics has improved the ability to monitor multiple metabolic pathways simultaneously in various experimental settings. However, questions still remain as to how certain steps in the metabolite extraction process affect the metabolic profiles of cancer cells. Here, we use ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) untargeted metabolomics to investigate the effects of different detachment and lysis methods on the types and abundances of metabolites extracted from MDA-MB-231 cells through the use of in-house standards libraries and pathway analysis software. Results indicate that detachment methods (trypsinization vs. scraping) had the greatest effect on metabolic profiles whereas lysis methods (homogenizer beads vs. freeze-thaw cycling) had a lesser, though still significant, effect. No singular method was clearly superior over others, with certain metabolite classes giving higher abundances or lower variation for each detachment-lysis combination. These results indicate the importance of carefully selecting sample preparation methods for cell-based metabolomics to optimize the extraction performance for certain compound classes.

7.
Transl Psychiatry ; 11(1): 103, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542199

RESUMO

Opioid use disorder (OUD) is diagnosed using the qualitative criteria defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Diagnostic biomarkers for OUD do not currently exist. Our study focused on developing objective biological markers to differentiate chronic opiate users with OUD from chronic opiate users without OUD. Using biospecimens from the Golestan Cohort Study, we compared the metabolomics profiles of high opium users who were diagnosed as OUD positive with high opium users who were diagnosed as OUD negative. High opium use was defined as maximum weekly opium usage greater than or equal to the median usage (2.4 g per week), and OUD was defined as having 2 or more DSM-5 criteria in any 12-month period. Among the 218 high opium users in this study, 80 were diagnosed as OUD negative, while 138 were diagnosed as OUD positive. Seven hundred and twelve peaks differentiated high opium users diagnosed as OUD positive from high opium users diagnosed as OUD negative. Stepwise logistic regression modeling of subject characteristics data together with the 712 differentiating peaks revealed a signature that is 95% predictive of an OUD positive diagnosis, a significant (p < 0.0001) improvement over a 63% accurate prediction based on subject characteristic data for these samples. These results suggest that a metabolic profile can be used to predict an OUD positive diagnosis.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/uso terapêutico , Biomarcadores , Estudos de Coortes , Humanos , Metabolômica
8.
Front Nutr ; 7: 584585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415121

RESUMO

Objective: Over 50 million people worldwide are estimated to use opioids, of which ~30 million use opiates (opium and its derivatives). Use of opiates has been associated with a variety of adverse complications such as neurological and behavioral outcomes, addiction, cancers, diabetes, and cardiovascular disease. While it is well known that opiates exert their neurobiological effects through binding with mu, kappa, and delta receptors to exert analgesic and sedative effects, mechanistic links to other health effects are not well understood. Our study focuses on the identification of biochemical perturbations in Golestan Cohort Study (GCS) opium users. Methods: We used untargeted metabolomics to evaluate the metabolic profiles of 218 opium users and 80 non-users participating in the GCS. Urine samples were obtained from adult (age 40-75) opium users living in the Golestan Province of Iran. Untargeted analysis of urine was conducted using a UPLC-Q-Exactive HFx Mass Spectrometry and a 700 MHz NMR Spectrometry. Results: These GCS opium users had a significantly higher intake of tobacco and alcohol and a significantly decreased BMI compared with non-users. Metabolites derived from opium (codeine, morphine, and related glucuronides), nicotine, and curing or combustion of plant material were increased in opium users compared with non-users. Endogenous compounds which differentiated the opium users and non-users largely included vitamins and co-factors, metabolites involved in neurotransmission, Kreb's cycle, purine metabolism, central carbon metabolism, histone modification, and acetylation. Conclusions: Our study reveals biochemical perturbations in GCS opium users that are important to the development of intervention strategies to mitigate against the development of adverse effects of substance abuse.

9.
Wiley Interdiscip Rev Syst Biol Med ; 10(3): e1413, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316320

RESUMO

Far from being just "bugs in our guts," the microbiota interacts with the body in previously unimagined ways. Research into the genome and the microbiome has revealed that the human body and the microbiota have a long-established but only recently recognized symbiotic relationship; homeostatic balance between them regulates body function. That balance is fragile, easily disturbed, and plays a fundamental role in human health-our very survival depends on the healthy functioning of these microorganisms. Increasing rates of cardiovascular, autoimmune, and inflammatory diseases, as well as epidemics in obesity and diabetes in recent decades are believed to be explained, in part, by unintended effects on the microbiota from vaccinations, poor diets, environmental chemicals, indiscriminate antibiotic use, and "germophobia." Discovery and exploration of the brain-gut-microbiota axis have provided new insights into functional diseases of the gut, autoimmune and stress-related disorders, and the role of probiotics in treating certain affective disorders; it may even explain some aspects of autism. Research into dietary effects on the human gut microbiota led to its classification into three proposed enterotypes, but also revealed the surprising role of blood group antigens in shaping those populations. Blood group antigens have previously been associated with disease risks; their subsequent association with the microbiota may reveal mechanisms that lead to development of nutritional interventions and improved treatment modalities. Further exploration of associations between specific enteric microbes and specific metabolites will foster new dietary interventions, treatment modalities, and genetic therapies, and inevitably, their application in personalized healthcare strategies. This article is categorized under: Laboratory Methods and Technologies > Metabolomics Translational, Genomic, and Systems Medicine > Translational Medicine Physiology > Mammalian Physiology in Health and Disease.


Assuntos
Doenças Autoimunes , Antígenos de Grupos Sanguíneos/metabolismo , Doenças Cardiovasculares , Diabetes Mellitus , Microbioma Gastrointestinal , Obesidade , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/microbiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiologia , Humanos , Inflamação/epidemiologia , Inflamação/metabolismo , Inflamação/microbiologia , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/microbiologia
10.
Vaccine ; 35(9): 1238-1245, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169076

RESUMO

An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers.


Assuntos
Biomarcadores/sangue , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Vacinas/efeitos adversos , Adulto , Sistemas de Notificação de Reações Adversas a Medicamentos , Doenças Assintomáticas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/sangue , Feminino , Humanos , Masculino , Miocardite/sangue , Miocardite/diagnóstico , Pericardite/sangue , Pericardite/diagnóstico , Projetos Piloto , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/efeitos adversos , Troponina/sangue , Vacinação/efeitos adversos
11.
J Appl Toxicol ; 37(5): 530-544, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27696470

RESUMO

Few investigations have been conducted on the disposition and fate of silver nanoparticles (AgNP) in pregnancy. The distribution of a single dose of polyvinylpyrrolidone (PVP)-stabilized AgNP was investigated in pregnant rats. Two sizes of AgNP, 20 and 110 nm, and silver acetate (AgAc) were used to investigate the role of AgNP diameter and particle dissolution in tissue distribution, internal dose and persistence. Dams were administered AgNP or AgAc intravenously (i.v.) (1 mg kg-1 ) or by gavage (p.o.) (10 mg kg-1 ), or vehicle alone, on gestation day 18 and euthanized at 24 or 48 h post-exposure. The silver concentration in tissues was measured using inductively-coupled plasma mass spectrometry. The distribution of silver in dams was influenced by route of administration and AgNP size. The highest concentration of silver (µg Ag g-1 tissue) at 48 h was found in the spleen for i.v. administered AgNP, and in the lungs for AgAc. At 48 h after p.o. administration of AgNP, the highest concentration was measured in the cecum and large intestine, and for AgAc in the placenta. Silver was detected in placenta and fetuses for all groups. Markers of cardiovascular injury, oxidative stress marker, cytokines and chemokines were not significantly elevated in exposed dams compared to vehicle-dosed control. NMR metabolomics analysis of urine indicated that AgNP and AgAc exposure impact the carbohydrate, and amino acid metabolism. This study demonstrates that silver crosses the placenta and is transferred to the fetus regardless of the form of silver. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/urina , Acetatos/farmacocinética , Acetatos/toxicidade , Administração Intravenosa , Administração Oral , Adulto , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Feminino , Feto/metabolismo , Humanos , Troca Materno-Fetal , Metabolômica , Nanopartículas Metálicas/administração & dosagem , Estresse Oxidativo , Tamanho da Partícula , Placenta/metabolismo , Gravidez , Prata/administração & dosagem , Compostos de Prata/farmacocinética , Compostos de Prata/toxicidade , Distribuição Tecidual
12.
Wiley Interdiscip Rev Syst Biol Med ; 8(6): 517-535, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27599872

RESUMO

Associations between blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. In the 1950s, the chemical identification of the carbohydrate structure of surface antigens led to the understanding of biosynthetic pathways. The blood type is defined by oligosaccharide structures, which are specific to the antigens, thus, blood group antigens are secondary gene products, while the primary gene products are various glycosyltransferase enzymes that attach the sugar molecules to the oligosaccharide chain. Blood group antigens are found on red blood cells, platelets, leukocytes, plasma proteins, certain tissues, and various cell surface enzymes, and also exist in soluble form in body secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions, urine, and amniotic fluid. Recent advances in technology, biochemistry, and genetics have clarified the functional classifications of human blood group antigens, the structure of the A, B, H, and Lewis determinants and the enzymes that produce them, and the association of blood group antigens with disease risks. Further research to identify differences in the biochemical composition of blood group antigens, and the relationship to risks for disease, can be important for the identification of targets for the development of nutritional intervention strategies, or the identification of druggable targets. WIREs Syst Biol Med 2016, 8:517-535. doi: 10.1002/wsbm.1355 For further resources related to this article, please visit the WIREs website.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/genética , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Eritroblastose Fetal/genética , Eritroblastose Fetal/metabolismo , Eritroblastose Fetal/patologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
13.
J Appl Toxicol ; 35(12): 1438-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26081520

RESUMO

A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.


Assuntos
Fulerenos/farmacocinética , Lactação , Exposição Materna , Troca Materno-Fetal , Leite/química , Animais , Biomarcadores/análise , Radioisótopos de Carbono , Fezes/química , Feminino , Fulerenos/administração & dosagem , Fulerenos/urina , Idade Gestacional , Injeções Intravenosas , Fígado/metabolismo , Pulmão/metabolismo , Placenta/metabolismo , Gravidez , Ratos Sprague-Dawley , Distribuição Tecidual
14.
J Immunol ; 194(10): 4846-59, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862817

RESUMO

Obese individuals are at greater risk for hospitalization and death from infection with the 2009 pandemic H1N1 influenza virus (pH1N1). In this study, diet-induced and genetic-induced obese mouse models were used to uncover potential mechanisms by which obesity increases pH1N1 severity. High-fat diet-induced and genetic-induced obese mice exhibited greater pH1N1 mortality, lung inflammatory responses, and excess lung damage despite similar levels of viral burden compared with lean control mice. Furthermore, obese mice had fewer bronchoalveolar macrophages and regulatory T cells during infection. Obesity is inherently a metabolic disease, and metabolic profiling has found widespread usage in metabolic and infectious disease models for identifying biomarkers and enhancing understanding of complex mechanisms of disease. To further characterize the consequences of obesity on pH1N1 infection responses, we performed global liquid chromatography-mass spectrometry metabolic profiling of lung tissue and urine. A number of metabolites were perturbed by obesity both prior to and during infection. Uncovered metabolic signatures were used to identify changes in metabolic pathways that were differentially altered in the lungs of obese mice such as fatty acid, phospholipid, and nucleotide metabolism. Taken together, obesity induces distinct alterations in the lung metabolome, perhaps contributing to aberrant pH1N1 immune responses.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Obesidade/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Citometria de Fluxo , Vírus da Influenza A Subtipo H1N1 , Masculino , Espectrometria de Massas , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações
15.
J Appl Toxicol ; 35(12): 1452-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25727383

RESUMO

A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Fulerenos/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Administração Intravenosa , Animais , Biomarcadores/análise , Biotransformação , Radioisótopos de Carbono , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/urina , Feminino , Fulerenos/sangue , Fulerenos/toxicidade , Fulerenos/urina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Taxa de Depuração Metabólica , Metabolômica , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Estresse Oxidativo/imunologia , Ratos Sprague-Dawley , Especificidade da Espécie , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual
16.
J Appl Toxicol ; 30(4): 354-60, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20063269

RESUMO

This study was conducted to determine the distribution of [(14)C]C60 in the pregnant rat and fetuses, and in the lactating rat and offspring. Pregnant rats were dosed on gestation day (gd) 15 and lactating rats were dosed on postnatal day (pnd) 8 via tail vein injection with a suspension of approximately 0.3 mg [(14)C]C60 kg(-1) body weight prepared in polyvinylpyrrolidone (PVP), or with PVP alone. Tissues were collected at 24 and 48 h after dosing. The largest portion of the administered dose was detected in the liver (approximately 43%, pregnant dam; approximately 35%, lactating dam) and lung (approximately 25%, lactating dam). Radioactivity (approximately 6%) was distributed to the reproductive tract, placenta and fetuses of the pregnant dam. Lactating rats had radioactivity distributed to the milk (3140 dpm g(-1) tissue, 24 h; 1620 dpm g(-1) tissue, 48 h), and to the pups' GI tract (2.8%, 24 h; 4.4% 48 h) and liver (<1%). Blood radioactivity was significant at 24 h (14-19%) and at 48 h (7%) after dosing; largely accounted for in the plasma fraction. Less that 4% of the dose was recovered in the maternal spleen, heart, brain, urine or feces. Metabolomics analysis of urine indicated that dams exposed to [(14)C]C60 had decreased metabolites derived from the Krebs cycle and increased metabolites derived from the urea cycle or glycolysis, as well as alterations in the levels of some sulfur-containing amino acids and purine/pyrimidine metabolites. This study demonstrated that [(14)C]C60 crosses the placenta and is transmitted to offspring via the dam's milk and subsequently systemically absorbed.


Assuntos
Fulerenos/farmacocinética , Lactação , Exposição Materna , Troca Materno-Fetal , Urina/química , Animais , Animais Recém-Nascidos , Radioisótopos de Carbono , Feminino , Fulerenos/efeitos adversos , Metabolômica , Gravidez , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
17.
J Expo Sci Environ Epidemiol ; 19(3): 284-97, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18461092

RESUMO

This study examines the use of physiologically based pharmacokinetic (PBPK) models for inferring exposure when the number of biomarker observations per individual is limited, as commonly occurs in population exposure surveys. The trade-off between sampling multiple biomarkers at a specific time versus fewer biomarkers at multiple time points was investigated, using a simulation-based approach based on a revised and updated chlorpyrifos PBPK model originally published. Two routes of exposure, oral and dermal, were studied as were varying levels of analytic measurement error. It is found that adding an additional biomarker at a given time point adds substantial additional information to the analysis, although not as much as the addition of another sampling time. Furthermore, the precision of the estimates of exposed dose scaled approximately with the analytic precision of the biomarker measurement. For acute exposure scenarios such as those considered here, the results of this study suggest that the number of biomarkers can be balanced against the number of sampling times to obtain the most efficient estimator after consideration of cost, intrusiveness, and other relevant factors.


Assuntos
Biomarcadores/metabolismo , Clorpirifos/farmacocinética , Inseticidas/farmacocinética , Modelos Teóricos , Biomarcadores/sangue , Biomarcadores/urina , Clorpirifos/sangue , Clorpirifos/urina , Humanos , Inseticidas/sangue , Inseticidas/urina , Funções Verossimilhança , Reprodutibilidade dos Testes
18.
Toxicol Sci ; 93(2): 256-67, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16870689

RESUMO

Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objective of this study was to define the kinetics of elimination of AM and its metabolites following oral and dermal administration. This is the second part of a study in which metabolites and hemoglobin adducts of AM were determined in people (Fennell et al., 2005, Toxicol. Sci. 85, 447-459). (1,2,3-(13)C(3))AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples were collected at 0-2, 2-4, 4-8, 8-16, and 16-24 h following administration orally, or at 0-2, 2-4, 4-8, 8-16, and 16-24 h following each of three daily dermal doses. (13)C(3)-AM and its metabolites in urine, (13)C(3)-glycidamide, (13)C(3)-N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide, and (13)C(3)-N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine, were quantitated using liquid chromatography-tandem mass spectrometry. The recovered urinary metabolites accounted for 45.6, 49.9, and 39.9% of a 0.5, 1.0, and 3.0 mg/kg oral dose (0-24 h), respectively, and for 4.5% of the dose after 3 mg/kg was administered daily for 3 days dermally (0-4 days). These results indicate that after oral administration AM is rapidly absorbed and eliminated. The half-life estimated for elimination of AM in urine was 3.1-3.5 h. After dermal administration, AM uptake is slow. This study indicated that skin provides a barrier that slows the absorption of AM, and results in limited systemic availability following dermal exposure to AM.


Assuntos
Acrilamida/metabolismo , Acetilcisteína/metabolismo , Acrilamida/urina , Administração Cutânea , Administração Oral , Adulto , Idoso , Cromatografia Líquida , Glutationa/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
19.
Toxicol Sci ; 85(1): 447-59, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15625188

RESUMO

Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-13C3) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-13C3) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake.


Assuntos
Acrilamida , Compostos de Epóxi/metabolismo , Hemoglobinas , Acrilamida/metabolismo , Acrilamida/farmacocinética , Acrilamida/toxicidade , Administração Cutânea , Administração Oral , Adulto , Idoso , Animais , Isótopos de Carbono , Relação Dose-Resposta a Droga , Hemoglobinas/efeitos dos fármacos , Hemoglobinas/metabolismo , Hemoglobinas/fisiologia , Humanos , Inativação Metabólica , Modelos Lineares , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344
20.
Toxicol Sci ; 82(2): 407-18, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15456918

RESUMO

Dibutylphthalate (DBP) can cause adverse effects on the developing male reproductive tract when administered late in gestation to pregnant rats. The objectives of this study were to evaluate the metabolism of DBP in female rats, and the pharmacokinetics of DBP in pregnant rats on gestational day (g.d.) 20. The identities of DBP metabolites in urine and in maternal and fetal plasma were confirmed by LC-MS/MS, as monobutylphthalate (MBP) and its glucuronide, monohydroxybutylphthalate and its glucuronide, and butanoic acid phthalate and its glucuronide. An LC-MS/MS method was developed for the quantitation of MBP and its glucuronide. MBP and MBP glucuronide were quantitated in maternal and fetal plasma, and in amniotic fluid from pregnant rats administered a single dose of DBP (50, 100, or 250 mg/kg by gavage in corn oil) on g.d. 20. The pharmacokinetics of MBP and MBP glucuronide were determined. MBP was the major metabolite in maternal and fetal plasma. With increasing dose, there was a nonlinear increase in area under the curve (AUC) for MBP, with a ten-fold increase in maternal plasma, and an eight-fold increase in fetal plasma between 50 mg/kg and 250 mg/kg. In amniotic fluid, the major metabolite initially was MBP, but by 24 h after dosing, the major metabolite was MBP glucuronide. Isomers of the MBP glucuronide were detected in amniotic fluid, suggesting acyl group migration, known to occur with acyl glucuronides. This study indicated that MBP, thought to be the active metabolite of DBP, can cross the placenta in late gestation, and that the metabolism of MBP is saturable.


Assuntos
Dibutilftalato/farmacocinética , Prenhez/metabolismo , Algoritmos , Líquido Amniótico/metabolismo , Animais , Biotransformação , Calibragem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Feminino , Glucuronídeos/metabolismo , Meia-Vida , Espectrometria de Massas , Veículos Farmacêuticos , Ácidos Ftálicos/metabolismo , Projetos Piloto , Gravidez , Ratos , Ratos Sprague-Dawley , Soluções , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...