Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(19): 7160-7169, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756794

RESUMO

Autonomous process optimization (APO) is a technology that has recently found utility in a multitude of process optimization challenges. In contrast to most APO examples in microflow reactor systems, we recently presented a system capable of optimization in high-throughput batch reactor systems. The drawback of APO in a high-throughput batch reactor system is the reliance on reaction sampling at a predetermined static timepoint rather than a dynamic endpoint. Static timepoint sampling can lead to the inconsistent capture of the process performance under each process parameter permutation. This is important because critical process behaviors such as rate acceleration accompanied by decomposition could be missed entirely. To address this drawback, we implemented a dynamic reaction endpoint determination strategy to capture the product purity once the process stream stabilized. We accomplished this through the incorporation of a real-time plateau detection algorithm into the APO workflow to measure and report the product purity at the dynamically determined reaction endpoint. We then applied this strategy to the autonomous optimization of a photobromination reaction towards the synthesis of a pharmaceutically relevant intermediate. In doing so, we not only uncovered process conditions to access the desired monohalogenation product in 85 UPLC area % purity with minimal decomposition risk, but also measured the effect of each parameter on the process performance. Our results highlight the advantage of incorporating dynamic sampling in APO workflows to drive optimization toward a stable and high-performing process.

2.
ACS Org Inorg Au ; 3(5): 266-273, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37810410

RESUMO

Mechanistic information on reactions proceeding via photoredox catalysis has enabled rational optimizations of existing reactions and revealed new synthetic pathways. One essential step in any photoredox reaction is catalyst quenching via photoinduced electron transfer or energy transfer with either a substrate, additive, or cocatalyst. Identification of the correct quencher using Stern-Volmer studies is a necessary step for mechanistic understanding; however, such studies are often cumbersome, low throughput and require specialized luminescence instruments. This report describes a high-throughput method to rapidly acquire a series of Stern-Volmer constants, employing readily available fluorescence plate readers and 96-well plates. By leveraging multichannel pipettors or liquid dispensing robots in combination with fast plate readers, the sampling frequency for quenching studies can be improved by several orders of magnitude. This new high-throughput method enabled the rapid collection of 220 quenching constants for a library of 20 common photocatalysts with 11 common quenchers. The extensive Stern-Volmer constant table generated greatly facilitates the systematic comparison between quenchers and can provide guidance to the synthetic community interested in designing and understanding catalytic photoredox reactions.

3.
Angew Chem Int Ed Engl ; 62(28): e202301664, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36940229

RESUMO

Within the realm of drug discovery, high-throughput experimentation techniques enable the rapid optimization of reactions and expedited generation of drug compound libraries for biological and pharmacokinetic evaluation. Herein we report the development of a segmented flow mass spectrometry-based platform to enable the rapid exploration of photoredox reactions for early-stage drug discovery. Specifically, microwell plate-based photochemical reaction screens were reformatted to segmented flow format to enable delivery to nanoelectrospray ionization-mass spectrometry analysis. This approach was demonstrated for the late-stage modification of complex drug scaffolds, as well as the subsequent structure-activity relationship evaluation of synthesized analogs. This technology is anticipated to expand the robust capabilities of photoredox catalysis in drug discovery by enabling high-throughput library diversification.


Assuntos
Descoberta de Drogas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas , Catálise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ensaios de Triagem em Larga Escala
4.
J Am Chem Soc ; 144(49): 22582-22588, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449284

RESUMO

Adenosine triphosphate (ATP) provides the driving force necessary for critical biological functions in all living organisms. In synthetic biocatalytic reactions, this cofactor is recycled in situ using high-energy stoichiometric reagents, an approach that generates waste and poses challenges with enzyme stability. On the other hand, an electrochemical recycling system would use electrons as a convenient source of energy. We report a method that uses electricity to turn over enzymes for ATP generation in a simplified cellular respiration mimic. The method is simple, robust, and scalable, as well as broadly applicable to complex enzymatic processes including a four-enzyme biocatalytic cascade in the synthesis of the antiviral molnupiravir.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/química , Biocatálise
5.
Nat Commun ; 11(1): 6202, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273454

RESUMO

The implementation of continuous flow technology is critical towards enhancing the application of photochemical reactions for industrial process development. However, there are significant time and resource constraints associated with translating discovery scale vial-based batch reactions to continuous flow scale-up conditions. Herein we report the development of a droplet microfluidic platform, which enables high-throughput reaction discovery in flow to generate pharmaceutically relevant compound libraries. This platform allows for enhanced material efficiency, as reactions can be performed on picomole scale. Furthermore, high-throughput data collection via on-line ESI mass spectrometry facilitates the rapid analysis of individual, nanoliter-sized reaction droplets at acquisition rates of 0.3 samples/s. We envision this high-throughput screening platform to expand upon the robust capabilities and impact of photochemical reactions in drug discovery and development.


Assuntos
Ensaios de Triagem em Larga Escala , Microfluídica/métodos , Processos Fotoquímicos , Alcenos/química , Indicadores e Reagentes , Metilação , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
6.
Synthesis (Stuttg) ; 51(5): 1063-1072, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35782790

RESUMO

The Minisci reaction, which encompasses the radical C-H alkylation of heteroarenes, has undergone revolutionary development in recent years. The application of photoredox catalysis for alkyl radical generation has given rise to a multitude of methods that feature enhanced functional group tolerance, generality, and operational simplicity. The intent of this short review is to bring readers up to date on this rapidly expanding field. Specifically, we will highlight key examples of visible light-driven Minisci alkylation strategies that represent key advancements in this area of research. The scope and limitation of these transformations will be discussed, with a focus on examining the underlying pathways for alkyl radical generation. Our goal is to make this short review a stepping stone for further synthetic research development.

7.
Org Lett ; 20(12): 3487-3490, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29856641

RESUMO

A net redox-neutral method for the decarboxylative alkylation of heteroarenes using photoredox catalysis is reported. Additionally, this method features the use of simple, commercially available carboxylic acid derivatives as alkylating agents, enabling the facile alkylation of a variety of biologically relevant heterocyclic scaffolds under mild conditions.


Assuntos
Luz , Alquilação , Catálise , Estrutura Molecular , Oxirredução
8.
J Org Chem ; 81(16): 6988-94, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27301646

RESUMO

We report a rapid, one-pot, operationally simple, and scalable preparation of valuable cationic heteroleptic iridium(III) polypyridyl photosensitizers. This method takes advantage of two consecutive microwave irradiation steps in the same reactor vial, avoiding the need for additional reaction purifications. A number of known heteroleptic iridium(III) complexes are prepared in up to 96% yield. Notably, this method is demonstrated to provide the synthetically versatile photosensitizer [Ir(ppy)2(dtbbpy)]PF6 in >1 g quantities in less than 5 h of bench time. We envision this method will help accelerate future developments in visible-light-dependent chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...