Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514385

RESUMO

Hybrid latex particles combine the unique properties of inorganic nano/micro particles with the inherent properties of polymers, exhibiting tremendous potential for a variety of applications. Recent years have witnessed an increased interest in the design and preparation of hybrid latex particles with well-defined size, structure and morphology. Due to its simplicity, versatility and environmental friendliness, the in situ (Pickering) emulsion polymerization has been demonstrated to be a powerful approach for the large-scale preparation of hybrid latex particles. In this review, the strategies and applications of in situ (Pickering) emulsion polymerization for the preparation of hybrid latex particles are systematically summarized. A particular focus is placed on the strategies for the preparation of hybrid latex particles with enhanced properties and well-defined core-shell, yolk-shell, multinuclear, raspberry-like, dumbbell-shaped, multipod-like or armored morphologies. We hope that the considerable advances, examples and principles presented in this review can motivate future contributions to provide a deeper understanding of current preparation technologies, develop new processes, and enable further exploitation of hybrid latex particles with outstanding characteristics and properties.

2.
ACS Omega ; 7(49): 45740, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530271

RESUMO

[This corrects the article DOI: 10.1021/acsomega.2c04097.].

3.
ACS Omega ; 7(46): 42056-42072, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440106

RESUMO

Sour gas reservoirs (including CO2 and H2S) are vulnerable to gas invasion when drilling into reservoir sections. The high solubility of the invaded gas in drilling fluid makes the gas invasion monitoring "hidden" and "sudden" for later expansion, and the blowout risk increases. Accurate prediction of gas dissolution is highly significant for monitoring gas invasion. In this study, the gas-liquid flow control equations considering gas dissolution were established. Focusing on the gas dissolution effect, a solubility experiment for CO2 and CH4 in an aqueous solution was performed using a phase equilibrium device. The experimental and simulation results revealed that the addition of CO2 can significantly increase gas dissolution, and the presence of salts decreases it. For solubility prediction of pure CH4 and CO2, the fugacity-activity solubility model, calculated using the Peng-Robinson equation of state, was more accurate than the Soave-Redlich-Kwong equation of state. The Soave-Redlich-Kwong equation of state has higher accuracy for the CO2 and CH4 gas mixture. If the gas dissolution effect is considered for wellbore gas-liquid flow, the time required for the mud pit gain to reach the early warning value increases. When the contents of CO2 and H2S in intrusive gases are higher, the time for mud pit gain change monitored on the ground increases, the concealment increases, and the risk of blowout increases.

4.
J Contam Hydrol ; 251: 104081, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272377

RESUMO

Gases that invade during deep-water oil and gas drilling may be concealed due to the gas dissolution effect, leading to increased well control risks. Accurate and rapid prediction of carbon dioxide and methane dissolution is of great significance for the prediction and control of wellbore pressure during gas invasion. In this study, 316 sets of carbon dioxide solubility data at 288.15 to 423.15 K and 0.1 to 100 MPa, and 266 sets of methane solubility data at 275.15 to 444.3 K and 0.1 to 68 MPa were used to train a machine learning algorithm. The machine learning prediction method for gas solubility was established with a support vector regression machine and a particle swarm optimisation algorithm. The kernel function and disciplinary parameters of the support vector regression machine were optimised using the experimental dataset. The solubility of CO2 and CH4 in water was measured using a gas solubility measurement device. The experimental and model analysis showed that the solubility of CO2 varied in different phase states. At a given pressure, the solubility of CO2 was highest in the liquid state, followed by the supercritical state, and then the gaseous state. The average absolute relative deviation percentages between the calculated values of the CO2 and CH4 solubility models and the experimental values were 2.57 and 8.20, respectively. The machine learning method is consistent with the high-precision Duan thermodynamic model for predicting the solubility of CO2 and CH4 in water and can be used to predict the gas solubility in deep water and deep oil and gas drilling.


Assuntos
Dióxido de Carbono , Metano , Solubilidade , Água , Gases
5.
Carbohydr Polym ; 249: 116833, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933677

RESUMO

Controlling the filtration of water-based drilling fluid effectively in high temperature environment is a great challenge in drilling engineering. In this study, ß-cyclodextrin polymer microspheres (ß-CDPMs) were synthesized by crosslinking between ß-cyclodextrin and epichlorohydrin via inverse emulsion polymerization and employed as filtration reducers. The standard American Petroleum Institute filtration test showed that the ß-CDPMs can only perform the enhanced filtration control ability at temperatures above 160 °C, and can tolerate the temperature resistance up to 240 °C without significant influence of rheology. As the thermal aging temperature is above 160 °C, numerous nano carbon spheres and nanostructured composites generated due to the occurrence of hydrothermal reaction. These high temperature stable nanoparticles bridged across the nano sized gaps and participated into forming dense filter cake, contributing to excellent filtration control. The filtration control mechanism proposed in this study opened a novel avenue for high temperature filtration control in water-based drilling fluids.

6.
Polymers (Basel) ; 10(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30966303

RESUMO

Vinyl Benzoate/Heptadecafluorodecyl acrylate (VBe/HFDA) co-polymers were synthesized and characterized as thickening agents for supercritical carbon dioxide (SC-CO2). The solubility and thickening capability of the co-polymer samples in SC-CO2 were evaluated by measuring cloud point pressure and relative viscosity. The molecular dynamics (MD) simulation for all atoms was employed to simulate the microscopic molecular behavior and the intermolecular interaction of co-polymer⁻CO2 systems. We found that the introduction of VBe group decreased the polymer⁻CO2 interaction and increased the polymer⁻polymer interaction, leading to a reduction in solubility of the co-polymers in SC-CO2. However, the co-polymer could generate more effective inter-chain interaction and generate more viscosity enhancement compared to the Poly(Heptadecafluorodecyl) (PHFDA) homopolymer due to the driving force provided by π-π stacking of the VBe groups. The optimum molar ratio value for VBe in co-polymers for the viscosity enhancement of SC-CO2 was found to be 0.33 in this work. The P(HFDA0.67-co-VBe0.33) was able to enhance the viscosity of SC-CO2 by 438 times at 5 wt. %. Less VBe content would result in a lack of intermolecular interaction, although excessive VBe content would generate more intramolecular π-π stacking and less intermolecular π-π stacking. Both conditions reduce the thickening capability of the P(HFDA-co-VBe) co-polymer. This work presented the relationship between structure and performance of the co-polymers in SC-CO2 by combining experiment and molecular simulations.

7.
Soft Matter ; 12(39): 8177-8185, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714309

RESUMO

Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains, as effective CO2-philic surfactants, could improve the solubility of polar substances in supercritical CO2. Varying the length of the HC of hybrid surfactants is an effective way to improve the CO2-philicity. In this paper, we have investigated the effects of the HC length on the self-assembly process and the CO2-philicity of hybrid surfactants (F7Hn, n = 1, 4, 7 and 10) in water/CO2 mixtures using molecular dynamics simulations. It is found that the self-assembly time of F7Hn exhibits a maximum when the length of the HC is equal to that of the FC (F7H7). In this case, the investigation of H-bonds between the water core and CO2 phase shows that F7H7 has the strongest CO2-philicity because it has the best ability to separate water and CO2. To explain the origin of the differences in separation ability, the analysis of the structures of the reverse micelles shows that there are two competing mechanisms with a shortening HC. Firstly, the volume of F7Hn is reduced, which thus decreases the separation ability. Moreover, this also leads to the curved conformation of the FC. As a result, the separation ability is enhanced. These two mechanisms are balanced in F7H7, which has the best ability to separate water and CO2. Our simulation results demonstrate that the increased volume and the curved conformation of the hybrid surfactant tail could enhance the CO2-philicity in F7Hn surfactants. It is expected that this work will provide valuable information for the design of CO2-philic surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA