Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 187: 108681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663234

RESUMO

Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.


Assuntos
Caprilatos , Fluorocarbonos , Titânio , Poluentes Químicos da Água , Titânio/toxicidade , Caprilatos/toxicidade , Animais , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Mytilus/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Nanopartículas/toxicidade
2.
Aquat Toxicol ; 270: 106900, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537436

RESUMO

Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 µg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.


Assuntos
Braquiúros , Pentaclorofenol , Poluentes Químicos da Água , Animais , Antioxidantes , Pentaclorofenol/toxicidade , Braquiúros/genética , Natação , Poluentes Químicos da Água/toxicidade , Titânio/toxicidade , Imunidade
3.
J Hazard Mater ; 469: 134062, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503212

RESUMO

Perfluorooctanoate (PFOA) is widely used as a surfactant and has metabolic, immunologic, developmental, and genetic toxicity on marine organisms. However, the effects of PFOA on individual defense functions in mussels in the presence of titanium dioxide nanoparticles (nano-TiO2) are poorly understood. To investigate the defense strategies and regulatory mechanisms of mussels under combined stressors, the thick-shell mussels Mytilus coruscus were exposed to different PFOA concentrations (0, 2 and 200 µg/L) and nano-TiO2 (0 and 0.1 mg /L, size: 25 nm) for 14 days. The results showed that, compared to the control group, PFOA and nano-TiO2 significantly reduced the number of byssal threads (NBT), byssal threads length (BTL), diameter of proximal threads (DPB), diameter of middle threads (DMB), diameter of distal byssal threads (DDB), adhesive plaque area (BPA), and breaking force of byssal threads (N). Under the influence of PFOA and nano-TiO2, the morphological surface smoothness of the fractured byssal threads surface increased, concurrently inducing an increased surface roughness in the adhesive plaques. Additionally, under the presence of PFOA and nano-TiO2, the foot displayed dispersed tissue organization and damaged villi, accompanied by an increased incidence of cellular apoptosis and an upregulation of the apoptosis gene caspase-8. Expression of the adhesion gene mfp-3 and byssal threads strength genes (preCOL-D, preCOL-NG) was upregulated. An interactive effect on the performance of byssal threads is observed under the combined influence of PFOA and nano-TiO2. Under co-exposure to PFOA and nano-TiO2, the performance of the byssal threads deteriorates, the foot structure is impaired, and the genes mRNA expression of byssal thread secretory proteins have compensated for the adhesion and byssal threads strength by up-regulation. Within marine ecosystems, organic and particulate contaminants exert a pronounced effect on the essential life processes of individual organisms, thereby jeopardizing their ecological niche within community assemblages and perturbing the dynamic equilibrium of the overarching ecosystem. ENVIRONMENTAL IMPLICATION: Perfluorooctanoic acid (PFOA) is prone to accumulate in marine organisms. TiO2 nanoparticles (nano-TiO2) are emerging environmental pollutants frequently found in marine environment. The effects of PFOA and nano-TiO2 on marine mussels are not well understood, and their toxic mechanisms remain largely unknown. We investigated the impacts of PFOA and nano-TiO2 on mussel byssus defense mechanisms. By assessing byssus performance indicators, morphological structures of the byssus, subcellular localization, and changes in byssal secretion-related genes, we revealed the combined effects and mechanisms through which these two types of pollutants may affect the functional capabilities and survival of mussels in the complex marine ecosystem.


Assuntos
Fluorocarbonos , Mytilus , Titânio , Animais , Ecossistema , Caprilatos/toxicidade
4.
Chemosphere ; 352: 141445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354862

RESUMO

Organic and nanoparticle pollutants are the main environmental problems affecting marine species, which have received great attention. However, the combined effect of pollutants on marine life in the presence of predators needs to be clarified. In this study, the effects of pentachlorophenol (PCP) and titanium dioxide nanoparticles (nano-TiO2) on the energy metabolism of mussels (Mytilus coruscus) in the presence of predators were assessed through cellular energy allocation (CEA) approach. Mussels were exposed to PCP (0, 1, and 10 µg/L), nano-TiO2 (1 mg/L, 25 and 100 nm), and predators (Portunus trituberculatus presence/absence) for 14 days. Exposure to high concentrations of PCP (10 µg/L) with small particle size nano-TiO2 (25 nm) decreased cellular energy stores (carbohydrates, lipids, and proteins) and increased cellular energy demand (measured as the activity of the mitochondrial electron transport system, ETS). During the first 7 days, energy was supplied mainly through the consumption of carbohydrates, while lipids are mobilized to participate after 7 days. The presence of predators caused a further decrease in energy stores. These findings demonstrate that PCP, nano-TiO2 and predators have a negative impact on energy metabolism at the cellular level. Carbohydrates are not able to meet the metabolic demand, lipids need to be consumed, and energy metabolism was also mediated by the involvement of proteins. Overall, our results suggest that PCP, nano-TiO2 and predators disrupt the cellular energy metabolism of mussels through reduced cellular energy allocation, small particles and predators drive mussels to exert energetic metabolic adjustments for detoxification reactions when toxic contaminants are present.


Assuntos
Poluentes Ambientais , Mytilus , Nanopartículas , Pentaclorofenol , Poluentes Químicos da Água , Animais , Pentaclorofenol/metabolismo , Mytilus/metabolismo , Nanopartículas/toxicidade , Metabolismo Energético , Poluentes Ambientais/metabolismo , Carboidratos , Lipídeos , Titânio/farmacologia , Poluentes Químicos da Água/metabolismo
5.
Sci Total Environ ; 893: 164836, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321498

RESUMO

Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.


Assuntos
Poluentes Ambientais , Mytilus , Pentaclorofenol , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Pentaclorofenol/toxicidade , Ecossistema , Comportamento Predatório , Mytilus/fisiologia , Glutationa , Superóxido Dismutase/metabolismo , Imunidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
6.
Mar Environ Res ; 179: 105705, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35863129

RESUMO

Intertidal and estuarine bivalves are adapted to fluctuating environmental conditions but the cellular adaptive mechanisms under combined stress scenarios are not well understood. The Hong Kong oysters Crassostrea hongkongensis experience periodic hypoxia/reoxygenation and salinity fluctuations during tidal cycles and extreme weather, which can negatively affect the respiratory organs (gills) involved in oxygen uptake and transport. We determined the effects of periodic hypoxia under different salinities on the oxidative stress response in Hong Kong oysters. Oxidative stress parameters (activities of superoxide dismutase (SOD), and catalase (CAT), tissue levels of malondialdehyde (MDA) and protein carbonyl content (PCC)) were determined in the gills of oysters exposed to diel-cycling hypoxia (hypoxia at night: 12h at 2 mg/L, reoxygenation: 12h at 6 mg/L) and normal dissolved oxygen (DO) (6 mg/L) under three salinities (10, 25, and 35‰) for 28 days. Oxygen regime in combination with salinity changes had significant interactive effects on all studied parameters except SOD. Salinity, DO and their interactions increased PCC after 14 and 28 days of exposure, and the combination of hypoxia/reoxygenation and decreased salinity showed the most severe effect. MDA content of the gills increased only after the long-term (28 days) exposure in decreased or increased salinity under normal DO treatments, showing PCC was more sensitive than MDA as biomarker of oxidative stress. Low salinity suppressed SOD activity regardless of the DO, whereas hypoxia induced SOD responses. CAT activities decreased significantly under high salinity with hypoxia/reoxygenation conditions. Our findings highlighted that periodic hypoxia/reoxygenation with salinity change induced antioxidant responses, which can impact the health of Hong Kong oyster C. hongkongensis and prolonged salinity stress may be one reason for the mortality during its aquaculture process.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Antioxidantes , Crassostrea/metabolismo , Brânquias , Hipóxia/metabolismo , Oxigênio/metabolismo , Carbonilação Proteica , Salinidade , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Fish Shellfish Immunol ; 127: 366-374, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772677

RESUMO

A growing number of studies identified long non-coding RNAs (lncRNAs) to be closely associated with immune function through the regulation of immune cell differentiation and immune cell effector function. Here we tested whether lncRNAs are involved in immune function in black carp (Mylopharyngodon piceus) through the exposure to Aeromonas hydrophila and analysis of the spleen gene expression response using RNA-seq. A total of 9036 lncRNAs were identified with high confidence. Differential expression analysis identified a total of 3558 DElncRNAs (Differential expression lncRNA) involved in A. hydrophila infection and 4526 target genes corresponding to DElncRNAs. After screening 4526 target genes in the InnateDB database, a total of 150 immunity genes were identified. After GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the obtained immunity genes, the Toll-like receptor (TLR) signaling pathway, TLR2, TLR3, TLR5, and TLR8 were identified as particularly significant in A. hydrophyla-resistant black carp. At the same time, the Ras signaling pathway was particularly enriched in the spleen of susceptible black carp. Analysis of PPI (protein-protein interaction) networks of the obtained immune genes identified SRC (SRC Proto-Oncogene), MYD88 (Myeloid differentiation primary response 88), MAPK3 (Mitogen-Activated Protein Kinase 3), MYC (MYC Proto-Oncogene) as main hub genes regulated by lncRNA and possibly mediating a mechanism of susceptibility to bacteria. These results establish a functional role of lncRNAs and a mechanistic base for the immune response in black carp resistant to A. hydrophila.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , RNA Longo não Codificante , Aeromonas hydrophila/fisiologia , Animais , Carpas/genética , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/veterinária , RNA Longo não Codificante/genética
8.
J Hazard Mater ; 424(Pt A): 127351, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879557

RESUMO

Pyrolysis has been widely utilized to achieve resource recovery of waste tires by attaining oil and carbon black. However, due to the stacking effect of fixed bed, the heat and mass transfer is insufficient during the pyrolysis process of waste tires. Additionally, the harmful N/S/Cl pollutants and heavy metals are inevitable that has been ignored. This paper systematically studied the effect of promoting heat and mass transfer on the oil quality and pollutant releasing characteristics during the pyrolysis of waste tires. A fixed bed pyrolizer with multifunction was innovatively designed to conduct fast pyrolysis by equipping an intermittent feeder and slow pyrolysis by equipping an agitator. Fast pyrolysis with feeding step by step and slow pyrolysis with stirring could promote the heat and mass transfer, which was firstly researched in lab-scale reactor. The experimental results demonstrated that slow pyrolysis with stirring was recommended with the target of acquiring pyrolytic oil. Promoting heat and mass transfer could improve the quality of oil and increase the retaining proportion of S in char during both fast and slow pyrolysis. The combustion of pyrolysis oil and gas generated more dioxins (0.6 ng/gwt) than the total dioxins in pyrolytic gas and oil (0.06 ng/gwt).


Assuntos
Poluentes Ambientais , Metais Pesados , Temperatura Alta , Pirólise
9.
Gene ; 768: 145317, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221537

RESUMO

Balbaini body (Bb) plays a vital role in germ plasm (GP) assembly and dorsoventral pattern, which is of critical important in germline specification and development. Bucky ball (buc) is reported to be essential for boosting primordial germ cell (PGC) through Bb in previous research. In the present study, a buc homolog (Olbuc) was identified in medaka (Oryzias latipes), and the roles of Olbuc on PGC development were further elucidated. The full length of Olbuc was 2148 bp, which contains a 1724 bp CDS (Coding sequence), a 167 bp 5' UTR (Untranslated region), and a 257 bp 3' UTR. By RT-PCR, the Olbuc RNA expression was maternally provided during embryogenesis and was restricted in the ovary of adult tissues. By in situ hybridization, Olbuc RNA was abundant in oocyte of meiotic stage, but gradually decreased as the oogenesis proceeded. Surprisingly, Olbuc was not co-localized with dazl, the marker gene of Bb. Interestingly, GFP can be specifically and stably expressed through the induction of Olbuc 3'UTR in PGCs. Furthermore, overexpression of Olbuc mRNA could increase PGC number and generate ectopic PGC in medaka and zebrafish embryos. In summary, our results showed that Olbuc performs a conserved function in PGC development in medaka.


Assuntos
Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Oryzias/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Regiões 3' não Traduzidas , Animais , Padronização Corporal , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Herança Materna , Oryzias/genética , Oryzias/metabolismo , Óvulo/metabolismo
10.
Gene ; 733: 144270, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31809839

RESUMO

Gene oct4 (also called oct3/4 or pou5f1) encodes an octamer-binding transcription factor and is best known for its pluripotency-specific expression and pluripotency-maintaining role in early embryos and embryonic stem cells of mouse and human. Its fish paralog oct4 (also called pou2 or pou5f3) plays divergent roles in embryos and stem cells development. Here the expression and function of the medaka oct4 (Oloct4) during gastrulation and organogenesis were analysed. Oloct4 RNA was abundant in pluripotent cells and differentiated extraembryonic cells of blastula embryos. It was also detectable in primordial germ cells, brain, eye and tail bud at advanced stages. Importantly, oct4 depletion at high dosages severely affected gastrulation and axis formation. Surprisingly, Oloct4 depletion at low dosages also led to embryos that either had defective brain, eye and/or blood vessels or completely lacked them. Oloct4 depletion in transgenic embryos caused the loss of rx2-positive retinal stem cells in the developing eye. Therefore, Oloct4 is essential for gastrulation, central nervous system development as well as angiogenesis in medaka besides its role in pluripotency maintenance. These results together with previous studies suggest that Oloct4 play pleiotropic roles and represent the ancestral prototype of vertebrate oct4 and pou2 genes.


Assuntos
Fatores de Transcrição de Octâmero/genética , Oryzias/embriologia , Oryzias/genética , Indutores da Angiogênese/metabolismo , Animais , Diferenciação Celular/genética , Sistema Nervoso Central/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Gastrulação/genética , Células Germinativas/metabolismo , Morfogênese , Fatores de Transcrição de Octâmero/metabolismo , Organogênese/genética , Células-Tronco Pluripotentes/metabolismo
11.
Environ Sci Pollut Res Int ; 26(28): 28860-28870, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31385252

RESUMO

Nowadays, most of mineral-based adsorbents are powder form, which makes them inconvenient to collect and always easy to cause secondary pollution. In this work, an organic rectorite composite nanofiber membrane (SRt-PAN) was designed and prepared by electrospinning technique. The as-received composite nanofiber membranes were characterized by XRD and SEM analysis, proving the homodisperse and existence of SRt in PAN nanofiber membrane. A series of batch experiments for BPA adsorption were carried out to investigate the effect of different adsorption parameters, including initial concentration, pH, and temperature of pollutant solution. The influences of modifier dosage and adsorbent dosage on the adsorption performance were investigated as well. On the basis of the experiment results, the adsorption process could be well described by the pseudo-second-order model and the Langmuir isotherm. In addition, the thermodynamic parameters indicate that this adsorption process is exothermic and spontaneous. Moreover, compared with pure nanofiber membranes and organic rectorite powders, the resultant SRt-PAN adsorbents exhibited higher adsorption capacity, superior reusability, and adsorption stability. It is indicated that the hydrophobicity surface of organic rectorite should be the key factor to not only the intimate interfacial combination between the mineral and PAN, but also the enhancement of BPA adsorption capacity.


Assuntos
Silicatos de Alumínio/síntese química , Compostos Benzidrílicos/química , Minerais/síntese química , Nanofibras/química , Fenóis/química , Adsorção , Silicatos de Alumínio/química , Cinética , Minerais/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...