Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(2): 716-734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749854

RESUMO

PURPOSE: To evaluate the assumption in amide proton transfer weighted (APTw) imaging that the APT dominates over the relayed nuclear Overhauser enhancement (rNOE) and other CEST effects such as those from amines/guanidines, thereby providing imaging of mobile proteins/peptides. METHODS: We introduced two auxiliary asymmetric analysis metrics that can vary the relative contributions from amine/guanidinium CEST and other effects. By comparing these metrics with the conventional asymmetric analysis metric on healthy rat brains, we can approximately assess the contribution from amines/guanidines to APTw and determine whether the APT dominates over the rNOE effect. To further investigate the molecular origin of APTw, we used samples of dialyzed tissue homogenates to eliminate small metabolites and supernatants of homogenates to separate lipids from other components. RESULTS: When the APTw signal is positive using high saturation amplitudes (e.g., 2-3 µT), the contributions from amines/guanidines are significant and cannot be ignored. The APTw signal from the dialyzed homogenates and the controls has negligible changes, indicating that it primarily originates from macromolecules rather than small metabolites. Additionally, the APTw signals with low saturation amplitudes (e.g., 1 µT) were negative in tissue homogenates but positive in their supernatants, suggesting that proteins contribute positively to APTw signals, whereas lipids contribute negatively to it. CONCLUSION: The positive APTw signal using high saturation amplitudes could have significant contributions from soluble proteins through CEST, including amide/amine/guanidine proton transfer effects. In contrast, the negative APTw signal using low saturation amplitudes has significant contribution from lipids through rNOE.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Amidas , Aminas , Guanidinas , Lipídeos
2.
Magn Reson Med ; 90(4): 1502-1517, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317709

RESUMO

PURPOSE: Accurately quantifying the amide proton transfer (APT) effect and the underlying exchange parameters is crucial for its applications, but previous studies have reported conflicting results. In these quantifications, the CEST effect from the fast exchange amine was always ignored because it was considered weak with low saturation powers. This paper aims to evaluate the influence of the fast exchange amine CEST on the quantification of APT at low saturation powers. METHODS: A quantification method with low and high saturation powers was used to distinguish APT from the fast exchange amine CEST effect. Simulations were conducted to assess the method's capability to separate APT from the fast exchange amine CEST effect. Animal experiments were performed to assess the relative contributions from the fast exchange amine and amide to CEST signals at 3.5 ppm. Three APT quantification methods, each with varying degrees of contamination from the fast exchange amine, were employed to process the animal data to assess the influence of the amine on the quantification of APT effect and the exchange parameters. RESULTS: The relative size of the fast exchange amine CEST effect to APT effect gradually increases with increasing saturation power. At 9.4 T, it increases from approximately 20% to 40% of APT effect with a saturation power increase from 0.25 to 1 µT. CONCLUSION: The fast exchange amine CEST effect leads overestimation of APT effect, fitted amide concentration, and amide-water exchange rate, potentially contributing to the conflicting results reported in previous studies.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Animais , Imageamento por Ressonância Magnética/métodos , Amidas , Aminas , Água
3.
Magn Reson Med ; 90(3): 1025-1040, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154382

RESUMO

PURPOSE: Quantifications of amide proton transfer (APT) and nuclear Overhauser enhancement (rNOE(-3.5)) mediated saturation transfer with high specificity are challenging because their signals measured in a Z-spectrum are overlapped with confounding signals from direct water saturation (DS), semi-solid magnetization transfer (MT), and CEST of fast-exchange pools. In this study, based on two canonical CEST acquisitions with double saturation powers (DSP), a new data-postprocessing method is proposed to specifically quantify the effects of APT and rNOE. METHODS: For CEST imaging with relatively low saturation powers ( ω 1 2 $$ {\upomega}_1^2 $$ ), both the fast-exchange CEST effect and the semi-solid MT effect roughly depend on ω 1 2 $$ {\upomega}_1^2 $$ , whereas the slow-exchange APT/rNOE(-3.5) effect do not, which is exploited to isolate a part of the APT and rNOE effects from the confounding signals in this study. After a mathematical derivation for the establishment of the proposed method, numerical simulations based on Bloch equations are then performed to demonstrate its specificity to detections of the APT and rNOE effects. Finally, an in vivo validation of the proposed method is conducted using an animal tumor model at a 4.7 T MRI scanner. RESULTS: The simulations show that DSP-CEST can quantify the effects of APT and rNOE and substantially eliminate the confounding signals. The in vivo experiments demonstrate that the proposed DSP-CEST method is feasible for the imaging of tumors. CONCLUSION: The data-postprocessing method proposed in this study can quantify the APT and rNOE effects with considerably increased specificities and a reduced cost of imaging time.


Assuntos
Amidas , Imagem Ecoplanar , Animais , Prótons , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética
4.
Magn Reson Med ; 90(2): 596-614, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093984

RESUMO

PURPOSE: The purpose is to evaluate the relative contribution from confounding factors (T1 weighting and magnetization transfer) to the CEST ratio (CESTR)-quantified amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) (-3.5) in tumors as well as whether the CESTR can reflect the distribution of the solute concentration (fs ). METHODS: We first provided a signal model that shows the separate dependence of CESTR on these confounding factors and the clean CEST/NOE effects quantified by an apparent exchange-dependent relaxation (AREX) method. We then measured the change in these effects in the 9-L tumor model in rats, through which we calculated the relative contribution of each confounding factor. fs was also fitted, and its correlations with the CESTR and AREX were assessed to evaluate their capabilities to reflect fs . RESULTS: The CESTR-quantified APT shows "positive" contrast in tumors, which arises primarily from R1w at low powers and both R1w and magnetization transfer at high powers. CESTR-quantified NOE (-3.5) shows no or weak contrast in tumors, which is due to the cancelation of R1w and NOE (-3.5), which have opposite contributions. CESTR-quantified APT has a stronger correlation with APT fs than AREX-quantified APT. CESTR-quantified NOE (-3.5) has a weaker correlation with NOE (-3.5) fs than AREX-quantified NOE (-3.5). CONCLUSION: CESTR reflects a combined effect of T1 weighting and CEST/NOE. Both factors depend on fs , which contributes positively to the dependence of CESTR on fs in APT imaging and enhances its correlation with fs . In contrast, these factors have opposite contributions to its dependence on fs in NOE (-3.5) imaging, thereby weakening the correlation.


Assuntos
Neoplasias Encefálicas , Ratos , Animais , Neoplasias Encefálicas/patologia , Prótons , Imageamento por Ressonância Magnética/métodos , Amidas , Aumento da Imagem/métodos
5.
Magn Reson Med ; 90(2): 673-685, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929814

RESUMO

PURPOSE: Nuclear Overhauser enhancemen mediated saturation transfer effect, termed NOE (-3.5 ppm), is a major source of CEST MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE (-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE (-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. METHODS: Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE (-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE (-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9 L tumors and healthy rat brains was performed to analyze the causes of the NOE (-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. RESULTS: Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE (-3.5 ppm) signals in tumors and higher NOE (-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. CONCLUSION: NOE (-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.


Assuntos
Neoplasias Encefálicas , Ratos , Animais , Neoplasias Encefálicas/metabolismo , Algoritmos , Prótons , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Lipídeos de Membrana
6.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778370

RESUMO

Purpose: Nuclear Overhauser Enhancement mediated saturation transfer effect, termed NOE(-3.5 ppm), is a major source of chemical exchange saturation transfer (CEST) MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE(-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE(-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. Methods: Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE(-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE(-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9L tumors and healthy rat brains was performed to analyze the causes of the NOE(-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. Results: Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE(-3.5 ppm) signals in tumors and higher NOE(-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. Conclusion: NOE(-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.

7.
Magn Reson Med ; 89(2): 636-651, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198015

RESUMO

PURPOSE: Nuclear Overhauser enhancement (NOE)-mediated CEST imaging at -3.5 ppm has shown clinical interest in diagnosing tumors. Multiple-pool Lorentzian fit has been used to quantify NOE, which, however, requires a long scan time. Asymmetric analysis of CEST signals could be a simple and fast method to quantify this NOE, but it has contamination from the amide proton transfer (APT) at 3.5 ppm. This work proposes a new method using an asymmetric analysis of a low-duty-cycle pulsed-CEST sequence with a flip angle of 360°, termed 2π-CEST, to reduce the contribution from APT. METHODS: Simulations were used to evaluate the capability of the 2π-CEST to reduce APT. Experiments on animal tumor models were performed to show its advantages compared with the conventional asymmetric analysis. Samples of reconstituted phospholipids and proteins were used to evaluate the molecular origin of this NOE. RESULTS: The 2π-CEST has reduced contribution from APT. In tumors where we show that the NOE is comparable to the APT effect, reducing the contamination from APT is crucial. The results show that the NOE signal obtained with 2π-CEST in tumor regions appears more homogeneous than that obtained with the conventional method. The phantom study showed that both phospholipids and proteins contribute to the NOE at -3.5 ppm. CONCLUSION: The NOE at -3.5 ppm has a different contrast mechanism from APT and other CEST/NOE effects. The proposed 2π-CEST is more accurate than the conventional asymmetric analysis in detecting NOE, and requires much less scan time than the multiple-pool Lorentzian fit.


Assuntos
Neoplasias Encefálicas , Animais , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Prótons , Amidas/metabolismo , Fosfolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA