Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cell Rep Methods ; 4(3): 100735, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38503290

RESUMO

Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas , Microscopia de Geração do Segundo Harmônico , Neuropatia de Pequenas Fibras , Humanos , Fibras Nervosas , Pele/inervação
2.
J Biophotonics ; 17(1): e202300285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738103

RESUMO

The trade-off between high-quality images and cellular health in optical bioimaging is a crucial problem. We demonstrated a deep-learning-based power-enhancement (PE) model in a harmonic generation microscope (HGM), including second harmonic generation (SHG) and third harmonic generation (THG). Our model can predict high-power HGM images from low-power images, greatly reducing the risk of phototoxicity and photodamage. Furthermore, the PE model trained only on normal skin data can also be used to predict abnormal skin data, enabling the dermatopathologist to successfully identify and label cancer cells. The PE model shows potential for in-vivo and ex-vivo HGM imaging.


Assuntos
Aprendizado Profundo , Microscopia
3.
Commun Med (Lond) ; 3(1): 77, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253966

RESUMO

BACKGROUND: Hematoxylin and Eosin (H&E)-based frozen section (FS) pathology is presently the global standard for intraoperative tumor assessment (ITA). Preparation of frozen section is labor intensive, which might consume up-to 30 minutes, and is susceptible to freezing artifacts. An FS-alternative technique is thus necessary, which is sectioning-free, artifact-free, fast, accurate, and reliably deployable without machine learning and/or additional interpretation training. METHODS: We develop a training-free true-H&E Rapid Fresh digital-Pathology (the-RFP) technique which is 4 times faster than the conventional preparation of frozen sections. The-RFP is assisted by a mesoscale Nonlinear Optical Gigascope (mNLOG) platform with a streamlined rapid artifact-compensated 2D large-field mosaic-stitching (rac2D-LMS) approach. A sub-6-minute True-H&E Rapid whole-mount-Soft-Tissue Staining (the-RSTS) protocol is introduced for soft/frangible fresh brain specimens. The mNLOG platform utilizes third harmonic generation (THG) and two-photon excitation fluorescence (TPEF) signals from H and E dyes, respectively, to yield the-RFP images. RESULTS: We demonstrate the-RFP technique on fresh excised human brain specimens. The-RFP enables optically-sectioned high-resolution 2D scanning and digital display of a 1 cm2 area in <120 seconds with 3.6 Gigapixels at a sustained effective throughput of >700 M bits/sec, with zero post-acquisition data/image processing. Training-free blind tests considering 50 normal and tumor-specific brain specimens obtained from 8 participants reveal 100% match to the respective formalin-fixed paraffin-embedded (FFPE)-biopsy outcomes. CONCLUSIONS: We provide a digital ITA solution: the-RFP, which is potentially a fast and reliable alternative to FS-pathology. With H&E-compatibility, the-RFP eliminates color- and morphology-specific additional interpretation training for a pathologist, and the-RFP-assessed specimen can reliably undergo FFPE-biopsy confirmation.


Brain tumors can be fatal and surgery is often required to remove them. During surgery, clinicians need to look for any leftover tumor tissue so that recurrence of the disease can be avoided. This requires sectioning of frozen tissue samples, staining them, and visualizing structural details under a microscope in the lab. This process should be fast to make the operation shorter and safer for the patient. Here, we provide an alternative approach to staining and imaging tumor samples, which is much faster than the current process. We show that our approach works with fresh tumor samples, avoiding the need to freeze and physically section them. We can distinguish normal versus tumor tissues, and pathologists do not require special training to use our approach. Our approach might ultimately help to improve the speed, safety, and outcomes of brain tumor surgery.

4.
Photoacoustics ; 31: 100509, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214430

RESUMO

Photoacoustic and thermoacoustic detection methods, including picosecond ultrasonic laser sonar based on metallic thin films, are widely used in industrial applications for their noninvasiveness. Herein, we present our findings on the phase advance effect of laser-induced picosecond ultrasonic signals in surface plasmon detection in Al nanofilms. Al has been extensively studied as a promising surface plasmon material in the ultraviolet region. Reflection time-resolved spectroscopy was integrated with a Kretschmann configuration to study the optical detection mechanisms with and without meeting the surface plasmon phase-matching condition. Through a comparison of the phase changes in picosecond ultrasonic pulses at different optical detection angles, we attributed the observed phase delay modification to the displacement of the detection region under the surface plasmon phase-matching condition.

5.
Photoacoustics ; 30: 100477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063309

RESUMO

Acoustical behavior of semiconducting transition metal dichalcogenides determines the heat transfer pathway, and thus plays a crucial role in the electronics and optoelectronics design. In this research, van der Waals heterojunctions (vdWHs) consisting of transferred monolayer and bi-layer MoS2 on GaN substrate were studied. We observed an asymmetric bipolar acoustic strain wave with ∼5 ps duration, which describes the surface of substrate undergoing strong compressive deformation after weak tensile deformation in the out-of-plane direction. We developed a theory to explain the mechanisms responsible for the observed strain waveform in the vdWHs elastic system, and obtained the critical parameters of the carrier dynamics by temporal fitting. Our results not only report a coherent acoustic phonon generated in the vdWHs, which will complement our understanding of the thermal transfer at the 2D/substrate interface, but also provide information about the intrinsic properties in the vdWHs, which would benefit the design of the 2D-based devices in the future.

6.
Lasers Surg Med ; 55(6): 561-567, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37051896

RESUMO

BACKGROUND AND OBJECTIVES: By creating microinjuries usually confined to the epidermis, a fractional picosecond 1064-nm Nd:YAG laser that delivers an array of highly focused beamlets can be effectively used for facial rejuvenation or resurfacing. However, the mechanism of dermal remodeling underlying this nonablative treatment remains unclear. METHODS: Five participants having skin phototype III-IV were recruited for intervention using a fractional picosecond 1064-nm Nd:YAG laser system equipped with a holographic diffractive beam-splitting optic. The laser-induced histopathological changes on human skin were examined in vivo using a harmonic generation microscopy (HGM), visualizing second harmonic generation (SHG), and third harmonic generation (THG) contrasts dichromatically. SHG refers for collagen distribution, while THG represents for epidermal components in the HGM signal. RESULTS: Histological hematoxylin and eosin staining and in vivo HGM imaging studies revealed the presence of epidermal vacuoles below the stratum granulosum along with keratinocyte degeneration or cytolysis. In addition to the epidermal vacuoles, HGM imaging exclusively demonstrated laser-induced shock wave propagation arranged as a THG-bright concentric pattern in the epidermis and loss of SHG signals in the papillary dermis immediately beneath the epidermal vacuoles. CONCLUSIONS: Alongside generating epidermal vacuoles, the fractional picosecond 1064-nm Nd:YAG laser induced collagen changes. These collagen changes may lead to dermal remodeling and neocollagenesis underlying the fractional picosecond laser treatment.


Assuntos
Lasers de Estado Sólido , Microscopia , Humanos , Pele/patologia , Epiderme/patologia , Derme
7.
Photoacoustics ; 28: 100412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281319

RESUMO

In this research, we applied THz coherent phonon spectroscopy to optically probe the vibrational modes of the epitaxially-grown bi-layer and tri-layer MoS2 on sapphire substrate. The layers' THz vibration is displacively stimulated and temporally retrieved by near-UV femtosecond laser pulses, revealing Raman-active and Raman-inactive modes in one measurement. With the complete breathing modes revealed, here we extend the linear chain model by considering the elastic contact with the substrate and vdWs coupling of the next nearest MoS2 layer to analyze the effective spring constants. We further considered the intralayer stiffness as a correction term to acquire the actual interlayer vdWs coupling. Our THz phonon spectroscopy results indicate the interlayer spring constants of 9.03 × 1019 N/m3 and 9.86 × 1019 N/m3 for bi-layer and tri-layer respectively. The extended model further suggests that a non-negligible substrate mechanical coupling and next nearest neighbor vdWs coupling of 1.48 × 1019 N/m3 and 1.04 × 1019 N/m3 have to be considered.

8.
Sci Rep ; 12(1): 12596, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869163

RESUMO

Low power microwave can effectively deactivate influenza type A virus through the nonthermal structure-resonant energy transfer effect, at a frequency matching the confined-acoustic dipolar mode frequency of the virus. Currently, aerosol is considered the major route for SARS-CoV-2 transmission. For the potential microwave-based sterilization, the microwave-resonant frequency of SARS-CoV-2 must be unraveled. Here we report a microwave absorption spectroscopy study of the SARS-CoV-2 and HCoV-229E viruses through devising a coplanar-waveguide-based sensor. Noticeable microwave absorption can be observed, while we identified the resonant frequencies of the 1st and 2nd dipolar modes of SARS-CoV-2 virus as 4 and 7.5 GHz respectively. We further found that the resonant frequencies are invariant to the virus titer, and we also studied the microwave absorption of HCoV-229E in weak acidity medium to simulate the common pH value in fluid secretion. Our results suggest the possible radiation frequency for the recently proposed microwave sterilization devices to inactivate SARS-CoV-2 virus through a nonthermal mechanism so as to control the disease transmission in the post-pandemic era.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , Micro-Ondas , Pandemias , SARS-CoV-2
9.
STAR Protoc ; 3(2): 101330, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496804

RESUMO

A resonant-scanning multiphoton optical microscope (MPM) with a millimeter-scale field-of-view (FOV) often encounters a poor Nyquist figure-of-merit (NFOM), leading to an aliasing effect owing to limited effective voxel-sampling rate. In this protocol, we provide a design guideline to enable high-NFOM MPM imaging while simultaneously securing a large FOV/digital-resolution ratio and a fast resonant raster-scanning speed. We further provide a free version of our custom acquisition software to assist with a smooth and easy construction process. For complete details on the use and execution of this protocol, please refer to Borah et al. (2021).


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Software , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Cintilografia
10.
iScience ; 25(2): 103773, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35169684

RESUMO

Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity.

11.
Biomed Opt Express ; 12(10): 6129-6142, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745726

RESUMO

The development of solar lentigines (SLs) is related to chronic ultraviolet exposure-induced cell senescence. We have previously demonstrated that basal keratinocyte enlargement is a morphological hallmark of skin senescence correlated to the process of skin aging, while clinical studies on the long-term monitoring of the cellular morphological changes in SLs after laser treatment are lacking. In this study, we have developed the harmonic generation microscopy (HGM) for in vivo monitoring the height of basal keratinocytes (HBK) and had administered Q-switched ruby laser or picosecond 532-nm Nd:YAG laser treatment on each side of the face of 25 Asian patients with facial SLs, respectively. In vivo HGM imaging was conducted to longitudinally analyze HBK and the horizontal cell size (HCS). Before treatment, the HBK was significantly higher in the SLs lesional area than that in the adjacent normal region, whereas there was no significant difference in the HCS. After treatment, the lesional HBK remained significantly higher than normal skin regardless of the laser treatment used. Our study indicates that the basal keratinocytes remain abnormal after laser treatment and demonstrates the capability of in vivo HGM for longitudinal, quantitative monitoring of cell senescence and therapeutic effect in SLs.

12.
Biomed Opt Express ; 12(8): 4661-4679, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513216

RESUMO

Multicolor labeling of biological samples with large volume is required for omic-level of study such as the construction of nervous system connectome. Among the various imaging method, two photon microscope has multiple advantages over traditional single photon microscope for higher resolution and could image large 3D volumes of tissue samples with superior imaging depth. However, the growing number of fluorophores for labeling underlines the urgent need for an ultrafast laser source with the capability of providing simultaneous plural excitation wavelengths for multiple fluorophores. Here, we propose and demonstrate a single-laser-based four-wavelength excitation source for two-photon fluorescence microscopy. Using a sub-100 fs 1,070-nm Yb:fiber laser to pump an ultrashort nonlinear photonic crystal fiber in the low negative dispersion region, we introduced efficient self-phase modulation and acquired a blue-shifted spectrum dual-peaked at 812 and 960 nm with 28.5% wavelength conversion efficiency. By compressing the blue-shift near-IR spectrum to 33 fs to ensure the temporal overlap of the 812 and 960 nm peaks, the so-called sum frequency effect created the third virtual excitation wavelength effectively at 886 nm. Combined with the 1,070 nm laser source as the fourth excitation wavelength, the all-fiber-format four-wavelength excitation source enabled simultaneous four-color two-photon imaging in Brainbow AAV-labeled (TagBFP, mTFP, EYFP, and mCherry) brain samples. With an increased number of excitation wavelengths and improved excitation efficiency than typical commercial femtosecond lasers, our compact four-wavelength excitation approach can provide a versatile, efficient, and easily accessible solution for multiple-color two-photon fluorescence imaging in the field of neuroscience, biomolecular probing, and clinical applications with at least four spectrally-distinct fluorophores.

13.
iScience ; 24(9): 103041, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34585109

RESUMO

The Nyquist-Shannon criterion has never been realized in a laser-scanning mesoscopic multiphoton microscope (MPM) with a large field-of-view (FOV)-resolution ratio, especially when employing a high-frequency resonant-raster-scanning. With a high optical resolution nature, a current mesoscopic-MPM either neglects the criterion and degrades the digital resolution to twice the pixel size, or reduces the FOV and/or the raster-scanning speed to avoid aliasing. We introduce a Nyquist figure-of-merit (NFOM) parameter to characterize a laser-scanning MPM in terms of its optical-resolution retrieving ability. Based on NFOM, we define the maximum aliasing-free FOV, and subsequently, a cross-over excitation wavelength, below which the FOV becomes NFOM-constrained irrespective of an optimized optical design. We validate our idea in a custom-built mesoscopic-MPM with millimeter-scale FOV yielding an ultra-high FOV-resolution ratio of >3,000, while securing up-to a 1.6 mm Nyquist-satisfied aliasing-free FOV, a ∼400 nm lateral resolution, and a 70 M/s effective voxel-sampling rate, all at the same time.

14.
Sci Rep ; 11(1): 329, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431907

RESUMO

Imaging depth and quality of optical microscopy can be enhanced by optical clearing. Here we investigate the optical clearing of the ex vivo human skin by 50% glycerol topical application, which is allowed for cosmetic usage. Harmonic generation microscopy, by combining second and third harmonic generation (THG) modalities, was utilized to examine the clearing effect. The THG image intensity is sensitive to the improved optical homogeneity after optical clearing, and the second harmonic generation (SHG) image intensity in the dermis could serve as a beacon to confirm the reduction of the scattering in the epidermis layer. As a result, our study supports the OC effect through 50% glycerol topical application. Our study further indicates the critical role of stratum corneum shrinkage for the observed SHG and THG signal recovery.


Assuntos
Glicerol/farmacologia , Microscopia , Fenômenos Ópticos , Pele/efeitos dos fármacos , Pele/diagnóstico por imagem , Relação Dose-Resposta a Droga , Humanos
15.
Photodermatol Photoimmunol Photomed ; 37(1): 20-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33476066

RESUMO

BACKGROUND: Most patients with actinic keratosis (AK) present with more than one lesion. Although histopathological examination is the gold standard for diagnosing this condition, performing an invasive skin biopsy for each AK is impractical. Thus, this study aimed to identify AK's morphological characteristics based on harmonic generation microscopy (HGM). Moreover, the correlation between features observed using HGM and histopathological grading of AK was examined. METHODS: Lesions of seven patients were examined using HGM (n = 1, ex vivo and n = 6, in vivo), and histopathological examinations of the biopsy specimens were also performed. The features of each AK, based on HGM, were assessed and compared with corresponding standard histopathological findings. RESULTS: Using the histopathological findings as a standard reference, HGM's accuracy in detecting features of AK lesions, such as hyperkeratosis, epidermal thinning, abnormal architecture, and atypical honeycomb pattern, was 100%. Approximately five (72%) patients had similar histopathological grades. Moreover, based on HGM, except for one patient with grade 1 AK, six (85.71%) patients had lesions with intraepidermal dendritic cell-like cells, representing melanocytes. CONCLUSION: Harmonic generation microscopy can be used in vivo to provide critical diagnostic information with a resolution comparable to histopathological examination. In addition, intralesional melanocytes in AK, which may be correlated with disease severity, can be specifically enhanced using HGM.


Assuntos
Ceratose Actínica/patologia , Melanócitos/patologia , Microscopia de Geração do Segundo Harmônico , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Taiwan
16.
Age Ageing ; 50(2): 519-526, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32980870

RESUMO

OBJECTIVES: this study investigated the prospective associations of accelerometer assessed daily steps with subsequent depressive symptoms in older adults. METHODS: a 2-year prospective study was performed in the community. A total of 285 older adults ≥65 years (mean age = 74.5) attended the baseline assessment in 2012. The second wave of assessment was carried out in 2014 including 274 (96.1%) participants. Daily step counts were measured with a triaxial accelerometer (ActiGraph GT3X+), and participants were divided into three categories (<3,500, 3,500-6,999 and ≥ 7,000 steps/day). The 15-item Geriatric Depression Scale was used to measure depressive symptoms. Negative binomial regression models with multivariable adjustment for covariates (baseline depressive symptoms, accelerometer wear time, age, gender, education, chronic disease, activities of daily living) were conducted to examine the association between daily steps and subsequent depressive symptoms. RESULTS: each 1,000-step increase in daily walking was linearly associated with a reduced rate of subsequent depressive symptoms (rate ratio [RR] = 0.95, 95% confidence interval [CI] = 0.92-0.98). Participants with daily step count in 3,500-6,999 (RR = 0.84, 95% CI = 0.70-0.99) and ≥7,000 steps (RR = 0.71, 95% CI = 0.55-0.92) per day had fewer depressive symptoms at follow-up. Sensitivity analyses assessing confounding and reverse causation provided further support for the stability of our findings. CONCLUSION: older adults engaging in more daily steps had fewer depressive symptoms after 2 years. Even as few as 3,500-6,999 steps a day was associated with a protecting effect. Accumulating ≥7,000 steps a day could provide the greatest protection against depressive symptoms.


Assuntos
Atividades Cotidianas , Depressão , Acelerometria , Idoso , Estudos de Coortes , Depressão/diagnóstico , Depressão/epidemiologia , Humanos , Estudos Prospectivos
17.
Psychophysiology ; 58(1): e13693, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996615

RESUMO

Previous research has revealed that a supine body posture, as compared to a sitting upright posture, decreases approach motivation and cognitive dissonance reduction. The present research was designed to test whether a supine body posture would decrease cognitive conflict processing, the process that occurs prior to cognitive dissonance reduction. Previous research using the Stroop task has found event-related potentials (N450, error-related negativity [ERN]) that are associated with cognitive conflict processing. In the current experiment, participants (N = 35) completed a color-naming Stroop task while sitting upright or supine (within-subjects, counterbalanced). Results revealed that as compared to the upright posture, the supine posture reduced the N450 Stroop interference effect but not the ERN.


Assuntos
Conflito Psicológico , Potenciais Evocados/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia , Postura Sentada , Decúbito Dorsal/fisiologia , Adulto , Dissonância Cognitiva , Eletroencefalografia , Feminino , Humanos , Masculino , Teste de Stroop , Adulto Jovem
18.
Opt Express ; 28(23): 34045-34053, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182882

RESUMO

Launching ultrashort femtosecond photoacoustic pulses with multi-terahertz bandwidth will find broad applications from fundamental acoustics in 2D materials and THz-acoustic and phonon spectroscopy to nondestructive detection in opaque materials with a sub-nanometer resolution. Here we report the generation of ultra-short 344 fs photoacoustic pulses with a 2.1 THz bandwidth from interfacial two-dimensional electron gas using optical femtosecond excitation. A comparison with simulation supports the dominant contribution of hot electron pressure and the ultrafast electron relaxation to produce pulsewidth shorter than the acoustic transit time across the electron wavefunction. Our simulation further indicates the possibility to generate <200 fs photoacoustic pulse.

19.
Biomed Opt Express ; 11(6): 3009-3024, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32637238

RESUMO

The capability to image the 3D distribution of melanin in human skin in vivo with absolute quantities and microscopic details will not only enable noninvasive histopathological diagnosis of melanin-related cutaneous disorders, but also make long term treatment assessment possible. In this paper, we demonstrate clinical in vivo imaging of the melanin distribution in human skin with absolute quantities on mass density and with microscopic details by using label-free third-harmonic-generation (THG) enhancement-ratio microscopy. As the dominant absorber in skin, melanin provides the strongest THG nonlinearity in human skin due to resonance enhancement. We show that the THG-enhancement-ratio (erTHG) parameter can be calibrated in vivo and can indicate the melanin mass density. With an unprecedented clinical imaging resolution, our study revealed erTHG-microscopy's unique capability for long-term treatment assessment and direct clinical observation of melanin's micro-distribution to shed light into the unknown pathway and regulation mechanism of melanosome transfer and translocation.

20.
Biomed Opt Express ; 11(2): 571-585, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206388

RESUMO

Multicolor fluorescence imaging has been widely used by neuroscientists to simultaneously observe different neuropathological features of the brain. However, these optical modalities rely on exogenous labeling. Here, we demonstrate, for the first time, a label-free additive-color multi-harmonic generation microscopy to elucidate, concurrently with different hues, Alzheimer's disease (AD) neuropathological hallmarks: amyloid ß (Aß) plaques and neurofibrillary tangles (NFT). By treating third harmonic generation (THG) and second harmonic generation (SHG) as two primary colors, our study can simultaneously label-free differentiate AD hallmarks by providing different additive colors between Aß plaques, NFT, and neuronal axons, with weaker THG presentation from NFT in most places of the brain. Interestingly our pixel-based quantification and Pearson's correlation results further corroborated these findings. Our proposed label-free technique fulfills the unmet challenge in the clinical histopathology for stain-free slide-free differential visualization of neurodegenerative disease pathologies, with a sub-femtoliter resolution in a single image field-of-view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...