Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 107850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042099

RESUMO

Understanding the physiological mechanism underlying nitrogen levels response to a low red/far-red ratio (R/FR) can provide new insights for optimizing wheat yield potential but has been not well documented. This study focused on the changes in nitrogen levels, nitrogen assimilation and nitrate uptake in wheat plants grown with and without additional far-red light. A low R/FR reduced wheat nitrogen accumulation and grain yield compared with the control. The levels of total nitrogen, free amino acid and ammonium were decreased in leaves but nitrate content was temporarily increased under a low R/FR. The nitrate reductase (NR) activity in leaves was more sensitive to a low R/FR than glutamine synthetase, glutamate synthase, glutamic oxalacetic transaminase and glutamic-pyruvic transaminase. Further analysis showed that a low R/FR had little effect on the NR activation state but reduced the level of NR protein and the expression of encoding gene TaNR1.2. Interestingly, a low R/FR rapidly induced TaPIL5 expression rather than TaHY5 and other members of TaPILs in wheat, suggesting that TaPIL5 was the key transcription factor response to a low R/FR in wheat and might be involved in the downregulation of TaNR1.2 expression. Besides, a low R/FR downregulated the expression of TaNR1.2 in leaves earlier than that of TaNRT1.1/1.2/1.5/1.8 in roots, which highlights the importance of NR and nitrogen assimilation in response to a low R/FR. Our results provide revelatory evidence that restricted nitrate reductase associated with downregulated TaNR1.2 and upregulated TaPIL5 mediate the suppression of nitrogen assimilation under a low R/FR in wheat.


Assuntos
Compostos de Amônio , Triticum , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Triticum/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo
2.
Plant Physiol Biochem ; 201: 107880, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37437346

RESUMO

Phosphorus (P) deficit limits high wheat (Triticum aestivum L.) yields. Breeding low-P-tolerant cultivars is vital for sustainable agriculture and food security, but the low-P adaptation mechanisms are largely not understood. Two wheat cultivars, ND2419 (low-P-tolerant) and ZM366 (low-P-sensitive) were used in this study. They were grown under hydroponic conditions with low-P (0.015 mM) or normal-P (1 mM). Low-P suppressed biomass accumulation and net photosynthetic rate (A) in both cultivars, whereas ND2419 was relatively less suppressed. Intercellular CO2 concentration did not decrease with the decline of stomatal conductance. Additionally, maximum electron transfer rate (Jmax) decreased sooner than maximum carboxylation rate (Vcmax). Results indicate that impeded electron transfer is directly responsible for decreased A. Under low-P, ND2419 exhibited greater PSII functionality (potential activity (Fv/Fo), maximum quantum efficiency (Fv/Fm), photochemical quenching (qL) and non-photochemical quenching (NPQ) required for electron transfer than ZM366, resulting more ATP for Rubisco activation. Furthermore, ND2419 maintained higher chloroplast Pi concentrations by enhancing chloroplast Pi allocation, compared with ZM366. Overall, the low-P-tolerant cultivar sustained electron transfer under low-P by enhancing chloroplast Pi allocation, allowing more ATP synthesis for Rubisco activation, ultimately presenting stronger photosynthesis capacities. The improved chloroplasts Pi allocation may provide new insights into improve low-P tolerance.


Assuntos
Ribulose-Bifosfato Carboxilase , Triticum , Triticum/fisiologia , Elétrons , Melhoramento Vegetal , Fotossíntese/fisiologia , Cloroplastos , Trifosfato de Adenosina , Folhas de Planta/fisiologia
3.
Physiol Plant ; 175(2): e13907, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37039612

RESUMO

Drought stress is one of the most serious environmental stress factor constraining crop production across the globe. Among cereals, wheat grains are very sensitive to drought as a small degree of stress can affect the enzymatic system. This study aimed to investigate whether nitrogen and pre-anthesis drought priming could enhance the action of major regulatory enzymes involved in starch accumulation and protein synthesis in bread wheat (Triticum aestivum L.). For this purpose, cultivars YM-158 (medium gluten) and YM-22 (low gluten) were grown in rain-controlled conditions under two nitrogen levels, that is, N180 (N1) and N300 (N2). Drought priming was applied at the jointing stage and drought stress was applied 7 days after anthesis. Drought stress reduced starch content but enhanced protein content in grains. N2 and primed plants kept higher contents of nonstructural carbohydrates, fructans, and sucrose; with higher activity of sucrose-phosphate synthase in flag leaves. Furthermore, N2 and priming treatments showed higher sink ability to develop grains by showing higher sucrose-to-starch conversion activities of adenosine diphosphate-glucose pyrophosphorylase, uridine diphosphate glucose pyrophosphorylase, sucrose-synthase, soluble-starch synthase, starch branching enzyme, and granule-bound starch synthase as compared to N1 and non-primed treatments. The application of N2 and primed treatment showed a greater ability to maintain grain filling in both cultivars as compared to N1 and non-primed crops. Our study suggested that high nitrogen has the potential to enhance the effect of pre-drought priming to change source-sink relationships and grain yield of wheat under drought stress during the filling process.


Assuntos
Nitrogênio , Amido , Triticum , Secas , Grão Comestível/metabolismo , Glutens/metabolismo , Glutens/farmacologia , Nitrogênio/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Triticum/fisiologia
4.
Environ Sci Pollut Res Int ; 30(17): 50743-50758, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797388

RESUMO

The endogenous stimulating molecule melatonin (N-acetyl-5-methoxytryptamine, MT) has an important function in mitigating the impact of multiple abiotic stressors. However, the ameliorating effect of MT on chromium (Cr) stress and its mechanisms remains unclear. Therefore, the present study aimed to clarify the mitigating effect of exogenous MT (0 µM and 100 µM) on wheat seedlings under Cr (0 µM and 50 µM) stress stemming from the growth and physiological characteristics, phytochelatin (PC) biosynthesis, Cr subcellular distribution, and antioxidant system of the plants in these treatments. The results showed that endogenous MT application significantly promoted plant growth and improved root morphology of wheat seedlings under Cr stress due to decreased Cr and reactive oxygen species (ROS) accumulation in both roots and leaves. Accumulation and transport of Cr from roots to leaves were reduced by MT, because enhanced vacuolar sequestration via upregulated PC accumulation, took place, derived from the fact that MT upregulated the expression of key genes for PC synthesis (TaPCS and Taγ-ECS). Furthermore, MT pre-treatment alleviated Cr-induced oxidative damage by diminishing lipid peroxidation and cell apoptosis, profiting from the enhanced scavenging ability of ROS as a result of the MT-induced increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the related encoding gene expression levels of TaSOD2, TaCAT, TaAPX, and TaGR. In conclusion, endogenous MT application improved the growth traits, antioxidant system, and decreased Cr accumulation especially at the leaf level in wheat seedlings under Cr stress mainly through enhancing antioxidant enzyme activities and altering Cr subcellular distribution via strengthening PC biosynthesis. The mechanisms of MT-induced plant tolerance to Cr stress could help develop new strategies for secure crop production in Cr-polluted soils.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Plântula , Triticum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Estresse Oxidativo , Peróxido de Hidrogênio/metabolismo
5.
Front Plant Sci ; 13: 965996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035683

RESUMO

Water and nitrogen (N) deficiencies are the major limitations to crop production, particularly when they occur simultaneously. By supporting metabolism, even when tissue water capacity is lower, nitrogen and priming may reduce drought pressure on plants. Therefore, the current study investigates the impact of nitrogen and priming on wheat to minimize post-anthesis drought stress. Plant morphology, physiology, and biochemical changes were observed before, during, and after stress at the post-anthesis stage. The plants were exposed to three water levels, i.e., well watering (WW), water deficit (WD), and priming at jointing and water deficit (PJWD) at the post-anthesis stage, and two different nitrogen levels, i.e., N180 (N1) and N300 (N2). Nitrogen was applied in three splits, namely, sowing, jointing, and booting stages. The results showed that the photosynthesis of plants with N1 was significantly reduced under drought stress. Moreover, drought stress affected chlorophyll (Chl) fluorescence and water-related parameters (osmotic potential, leaf water potential, and relative water content), grain filling duration (GFD), and grain yield. In contrast, PJWD couple with high nitrogen treatment (N300 kg ha-1) induced the antioxidant activity of peroxidase (37.5%), superoxide dismutase (29.64%), and catalase (65.66%) in flag leaves, whereas the levels of hydrogen peroxide (H2O2) and superoxide anion radical (O2 -) declined by 58.56 and 66.64%, respectively. However, during the drought period, the primed plants under high nitrogen treatment (N300 kg ha-1) maintained higher Chl content, leaf water potential, and lowered lipid peroxidation (61%) (related to higher activities of ascorbate peroxidase and superoxide dismutase). Plants under high nitrogen treatment (N300 kg ha-1) showed deferred senescence, improved GFD, and grain yield. Consequently, the research showed that high nitrogen dose (N300 kg ha-1) played a synergistic role in enhancing the drought tolerance effects of priming under post-anthesis drought stress in wheat.

6.
Front Plant Sci ; 12: 675582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177993

RESUMO

Inhibited photosynthesis caused by post-anthesis high-temperature stress (HTS) leads to decreased wheat grain yield. Magnesium (Mg) plays critical roles in photosynthesis; however, its function under HTS during wheat grain filling remains poorly understood. Therefore, in this study, we investigated the effects of Mg on the impact of HTS on photosynthesis during wheat grain filling by conducting pot experiments in controlled-climate chambers. Plants were subjected to a day/night temperature cycle of 32°C/22°C for 5 days during post-anthesis; the control temperature was set at 26°C/16°C. Mg was applied at the booting stage, with untreated plants used as a control. HTS reduced the yield and net photosynthetic rate (P n ) of wheat plants. The maximum carboxylation rate (V Cmax ), which is limited by Rubisco activity, decreased earlier than the light-saturated potential electron transport rate. This decrease in V Cmax was caused by decreased Rubisco activation state under HTS. Mg application reduced yield loss by stabilizing P n . Rubisco activation was enhanced by increasing Rubisco activase activity following Mg application, thereby stabilizing P n . We conclude that Mg maintains Rubisco activation, thereby helping to stabilize P n under HTS.

7.
Ecotoxicol Environ Saf ; 220: 112241, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000501

RESUMO

Chromium (Cr) pollution has serious harm to crop growth, while little is known on the role of melatonin (MT) on seed germination and physiology in Cr-stressed wheat. The effects of seed soaking with MT on growth, reserve mobilization, osmotic regulation and antioxidant capacity of wheat seeds during germination under hexavalent chromium (100 µM) stress were investigated. The results indicated that Cr toxicity decreased the seed germination rate by 16% and suppressed the growth of germinated seeds compared to unstressed seeds. MT in the concentration-dependent manner increased germination rate and promoted subsequent growth when seeds were exposed to Cr stress, but the effect could be counteracted at high concentration. Seed soaking with MT (100 µM) markedly decreased Cr accumulation in seeds, radicals and coleoptiles by 15%, 6% and 15%, respectively, and enhanced α-amylase activity and soluble sugar and free amino acids content in seeds to improve reserve mobilization under Cr stress, compared with Cr treatment. Furthermore, decreasing the level of osmotic regulators (soluble sugar and soluble protein) in radicles under MT combined with Cr treatment confirmed the reduction of osmotic stress caused by Cr stress. Importantly, MT pretreatment reduced H2O2 content by 19% and O2·- release rate by 45% in radicles under Cr toxicity compared with Cr-stressed wheat, in terms of promoting scavenging ability and decreasing production ability, which was to upregulate the activities and encoding genes expression levels of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX) and peroxidase (POD) and to downregulate plasma membrane-bound NADPH oxidase (NOX) encoding genes (TaRbohD, TaRbohF) expression, respectively. In all, these results provided evidence that seed soaking with MT could be a potentially method to protect wheat seeds from Cr toxicity, which effectively ameliorated germination under Cr stress by enhancing reserve mobilization and antioxidant metabolism in wheat.


Assuntos
Antioxidantes/metabolismo , Cromo/efeitos adversos , Germinação/efeitos dos fármacos , Melatonina/metabolismo , Sementes/fisiologia , Triticum/fisiologia , Melatonina/administração & dosagem , Osmose , Sementes/efeitos dos fármacos , Estresse Fisiológico , Triticum/efeitos dos fármacos
8.
Front Plant Sci ; 10: 818, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293611

RESUMO

Drought is among the main environmental stressors that reduces wheat production. Nitrogen (N) availability affects plant adaptation to abiotic stress, but the effect of low N (LN) on drought tolerance is unclear. To identify the effect of LN priming on water-deficit stress tolerance in wheat seedlings, we primed cultivar Yangmai158 with 0.25 mM N for 7 days, and then added 20% polyethylene glycol 6000 as a water-deficit treatment for 5 days. The net photosynthetic rate (Pn), plant biomass, and plant growth rate (GR) were significantly reduced under water-deficit conditions; such decreases were less severe in LN-primed (LND) plants than non-primed (CKD) plants. The leaf relative water content (LRWC) decreased under water-deficit conditions, which in turn led to a reduced transpiration rate, stomatal conductance, and intercellular CO2 concentration (C i), causing a stomatal limitation on photosynthesis. LN priming also enhanced root growth, resulting in a higher LRWC and less stomatal limitation in LND plants than CKD plants. PSII quantum efficiency, photochemical quenching, and maximum PSII quantum efficiency were reduced under water-deficit conditions, indicating photoinhibition. However, LN priming increased the electron flux to photorespiration and the Mehler pathway, reducing photoinhibition. In conclusion, LN priming improved the leaf water status and increased alternative electron flux to attenuate photoinhibition, thus alleviating the inhibition of photosynthesis, and growth due to water deficiency.

9.
Funct Plant Biol ; 45(8): 840-853, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32291066

RESUMO

Excess N input results in low N use efficiency and environmental crisis, so nitrogenous fertiliser applications must be reduced. However, this can lead to low-N stress. Previous studies on low N have not explored the unique adjustment strategy to N deficiency in the short term, which is important for developing long-term N deficiency tolerance. In this case, two wheat (Triticum aestivum L.) cultivars with different tolerances to low N, Zaoyangmai (sensitive) and Yangmai158 (tolerant), were exposed to 0.25mM N as a N-deficient condition with 5.0mM N as a control. Under long-term N-deficient conditions, a significant decrease in Rubisco content resulted in decreased Rubisco activity and net photosynthetic rate (Pn) in both cultivars. However, the NO3-:soluble protein ratio decreased, and nitrate reductase and glutamine synthetase activity increased under short-term N deficiency, especially in Yangmai158. As a result, Rubisco content was not decreased in Yangmai158, while total N content decreased significantly. Moreover, increased Rubisco activase activity promoted Rubisco activation under short-term N deficiency. In sequence, Rubisco activity and Pn improved under short-term N deficiency. In conclusion, N deficiency-tolerant cultivars can efficiently assimilate N to Rubisco and enhance Rubisco activation to improve photosynthetic capabilities under short-term N deficiency conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...