Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404172, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734973

RESUMO

Aqueous aluminum ion batteries (AAIBs) hold significant potential for grid-scale energy storage owing to their intrinsic safety, high theoretical capacity, and abundance of aluminum. However, the strong electrostatic interactions and delayed charge compensation between high-charge-density aluminum ions and the fixed lattice in conventional cathodes impede the development of high-performance AAIBs. To address this issue, this work introduces, for the first time, high-entropy Prussian blue analogs (HEPBAs) as cathodes in AAIBs with unique lattice tolerance and efficient multipath electron transfer. Benefiting from the intrinsic long-range disorder and robust lattice strain field, HEPBAs enable the manifestation of the lattice respiration effect and minimize lattice volume changes, thereby achieving one of the best long-term stabilities (91.2% capacity retention after 10 000 cycles at 5.0 A g-1) in AAIBs. Additionally, the interaction between the diverse metal atoms generates a broadened d-band and reduced degeneracy compared with conventional Prussian blue and its analogs (PBAs), which enhances the electron transfer efficiency with one of the best rate performance (79.2 mAh g-1 at 5.0 A g-1) in AAIBs. Furthermore, exceptional element selectivity in HEPBAs with unique cocktail effect can facile tune electrochemical behavior. Overall, the newly developed HEPBAs with a high-entropy effect exhibit promising solutions for advancing AAIBs and multivalent-ion batteries.

2.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956829

RESUMO

Revealing the evolutional pathway of the nucleation and crystallization of nanostructures at the atomic scale is crucial for understanding the complex growth mechanisms at the early stage of new substances and spices. Real-time discrimination of the atomic mechanism of a nanodroplet transition is still a formidable challenge. Here, taking advantage of the high temporal and spatial resolution of transmission electron microscopy, the detailed growth pathway of Pb nanodroplets at the early stage of nucleation was directly observed by employing electron beams to induce the nucleation, growth, and fusion process of Pb nanodroplets based on PbTiO3 nanowires. Before the nucleation of Pb nanoparticles, the atoms began to precipitate when they were irradiated by electrons, forming a local crystal structure, and then rapidly and completely crystallized. Small nanodroplets maintain high activity and high density and gradually grow and merge into stable crystals. The whole process was recorded and imaged by HRTEM in real time. The growth of Pb nanodroplets advanced through the classical path and instantaneous droplet coalescence. These results provide an atomic-scale insight on the dynamic process of solid/solid interface, which has implications in thin-film growth and advanced nanomanufacturing.


Assuntos
Nanoestruturas , Nanofios , Cristalização/métodos , Chumbo , Microscopia Eletrônica de Transmissão , Nanoestruturas/química
3.
Nano Lett ; 22(13): 5221-5229, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35727314

RESUMO

Enhancing microstructural and electrochemical stabilities of Ni-rich layered oxides is critical for improving the safety and cycle-life of high-energy Li-ion batteries. Here we propose a thermochemical cyclization strategy where heating polyacrylonitrile with LiNi0.8Co0.1Mn0.1O2 can simultaneously construct a cyclized polyacrylonitrile outer layer and a rock-salt bridge-like inner layer, forming a compact dual-coating of LiNi0.8Co0.1Mn0.1O2. Systematic studies demonstrate that the mild cyclization reaction between polyacrylonitrile and LiNi0.8Co0.1Mn0.1O2 induces a desirable "layered to rock-salt" structural transformation to create a nano-intermedium that acts as the bridge for binding cyclized polyacrylonitrile to layered LiNi0.8Co0.1Mn0.1O2. Because of the improvement of the structural and electrochemical stability and electrical properties, this cathode design remarkably enhances the cycling performance and rate capability of LiNi0.8Co0.1Mn0.1O2, showing a high reversible capacity of 183 mAh g-1 and a high capacity retention of 83% after 300 cycles at 1 C rate. Notably, this facile and scalable surface engineering makes Ni-rich cathodes potentially viable for commercialization in high-energy Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...