Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 640: 521-539, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878070

RESUMO

Bone implants for clinical application should be endowed with antibacterial activity, biocompatibility, and even osteogenesis-promoting properties. In this work, metal-organic framework (MOF) based drug delivery platform was used to modify titanium implants for improved clinical applicability. Methyl Vanillate@Zeolitic Imidazolate Framework-8 (MV@ZIF-8) was immobilized on the polydopamine (PDA) modified titanium. The sustainable release of the Zn2+ and MV causes substantial oxidative damage to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The increased reactive oxygen species (ROS) significantly up-regulates the expression of oxidative stress and DNA damage response genes. Meanwhile, the structural disruption of lipid membranes caused by the ROS, the damage caused by Zinc active sites and the damage accelerated by the MV are both involved in inhibiting bacterial proliferation. The up-regulated expression of the osteogenic-related genes and proteins indicated that the MV@ZIF-8 could effectively promote the osteogenic differentiation of the human bone mesenchymal stem cells (hBMSCs). RNA sequencing and Western blotting analysis revealed that the MV@ZIF-8 coating activates the canonical Wnt/ß-catenin signaling pathway through the regulation of tumor necrosis factor (TNF) pathway, thereby promoting the osteogenic differentiation of the hBMSCs. This work demonstrates a promising application of the MOF-based drug delivery platform in bone tissue engineering.


Assuntos
Estruturas Metalorgânicas , Osteogênese , Humanos , Estruturas Metalorgânicas/farmacologia , Escherichia coli , Espécies Reativas de Oxigênio , Titânio/farmacologia , Titânio/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Diferenciação Celular
2.
Colloids Surf B Biointerfaces ; 219: 112840, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113223

RESUMO

Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.

3.
Materials (Basel) ; 15(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35591676

RESUMO

With the development and wide application of nickel-based single-crystal superalloys, the effect of Ru on the microstructure stability and high-temperature properties of superalloys is becoming increasingly important. In this study, the effect of Ru on the evolution of the γ' phase in Ni-Al-Ru ternary alloys during aging treatment was analyzed, using a scanning electron microscope and transmission electron microscope, combined with energy-dispersive spectroscopy. The relationship between chemical partition behavior and γ/γ' lattice misfit was investigated in detail. During the aging process, Ru addition suppressed the growth rate and rafting process of γ' precipitates, while the effect of Ru on hindering γ' phase growth was reduced when the Ru content was over 3 at%. Ru preferentially partitioned to the γ phase, and its partitioning ratio to the γ phase increased with a variation in Ru content from 1 at% to 3 at% and decreased for the NiAl6Ru alloy. Additionally, the lattice misfit of all alloys was positive and reduced with the increase in Ru content, which hindered the Ru atoms to diffuse into the γ phase and promoted the shape of γ' precipitates to change from cubic to spherical.

4.
J Mol Model ; 27(6): 175, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021403

RESUMO

In order to reveal the fouling problem on the outer surface of the steam generator (SG) tube in the secondary circuit condition of pressurized water reactor (PWR) nuclear power plant, based on the density functional theory (DFT) method, the Cambridge sequential total energy program package (CASTEP) is used to simulate seven kinds of highly symmetric adsorption structure models of termination with tetrahedral Fe (A termination) and termination with octahedral Fe (B termination) on Fe3O4 (0 0 1) surface. The adsorption energies and stable adsorption conformations are calculated. The results show that the most stable adsorption structures of the Fe2+/Fe3O4 (0 0 1) configurations are Fe2+ above Fe-O bond of B layer termination (Fe3O4(001) A-b). During the adsorption, the Fe-Fe, Fe-O bond length, and Fe-Fe-O bond angle of (0 0 1) surface change, and the atomic positions parallel and perpendicular to (0 0 1) surface change correspondingly. The change happened to the surface layer is the most drastic one. The calculation of charge population, the density of states (DOS), and electron local function of Fe2+/Fe3O4 (0 0 1) optimal adsorption configuration show that there is electron transfer between Fe2+ and Fe3O4 (0 0 1), and the adsorption type is chemisorption. Among them, Fe (Fe2+)-Fe (Fe3O4) forms a metal bond, and Fe (Fe2+)-O (Fe3O4) forms the ionic bond. The results illustrate the interaction between free Fe2+ and Fe3O4 is the reason of the nucleation and agglomeration of Fe3O4 scale and it provides the foundation for the further research on Fe3O4 scale deposition.

5.
Materials (Basel) ; 13(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998230

RESUMO

The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning Kelvin probe test (SKP). The results reveal that the welded joints, with a fully austenitic structure, are obtained by laser welding. In addition, the preferred orientation of grains in fusion zone (FZ) increased with the increase of welding speed. Additionally, the coincidence site lattice (CSL) grain boundaries of FZ decreased with increasing welding speed. However, potentiodynamic polarization and SKP results demonstrated that the welding speed of 1.5 m/min renders superior corrosion resistance. It can also be inferred that the corrosion properties of the welded joints are related to the grain size and frequency of CSL grain boundary in FZ.

6.
Springerplus ; 5(1): 1613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652186

RESUMO

Characteristics of flow field and stirring ability of coherent jet with various shrouding CH4 flow rates on the molten bath were studied by combustion experiment and numerical simulation. The axial velocity and total temperature distributions of coherent jet under hot (1700 K) and cold (298 K) ambient condition were analyzed. The Eddy Dissipation Concept model was used in simulation with detail chemical kinetic mechanisms, and the numerical simulation results were agreed well with the combustion experiment in this research. Based on the simulation and experiment results, when the CH4 rate was 230, 207 and 184 Nm(3)/h, their disparity rate of average velocity and total temperature was small than 5 and 6 %, respectively, at high ambient temperature. Hence, the same stirring effect might be achieved by those three kinds of CH4 flow rates in EAF steelmaking process. According to the industrial application research, the best CH4 flow rate is 184 Nm(3)/h, which could stir molten bath well and reduce energy consumption in steelmaking process.

7.
ACS Appl Mater Interfaces ; 8(28): 18608-19, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27355902

RESUMO

Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

8.
J Synchrotron Radiat ; 23(Pt 3): 718-28, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140151

RESUMO

Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles. In situ temperature-dependent small-angle X-ray scattering was used to detect the increase in particle size with temperature. In situ temperature-dependent X-ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four-stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10(-5) K(-1)) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature-driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.

9.
J Synchrotron Radiat ; 22(2): 376-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723939

RESUMO

Noncrystalline nickel phosphide (Ni-P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni-P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni-P nanoparticles. In this paper, noncrystalline Ni-P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni-P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni-P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni-P nanoparticles. Therefore, the as-prepared noncrystalline Ni-P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate.

10.
Int J Biol Macromol ; 57: 99-104, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466498

RESUMO

The microstructural change of degummed Bombyx mori silk was examined by in situ wide-angle X-ray-scattering (WAXS) with applied stretching force. WAXS patterns confirmed that the crystalline and amorphous regions coexist in the silk fibers. The crystallites with ß-sheet structure have an orthorhombic unit cell with lattice parameters: a=9.10 Å, b=9.71 Å and c=6.80 Å. The crystallite size, crystallite orientation and crystallinity were also estimated based on the WAXS patterns. The results demonstrate that the crystallite size is almost unchanged with the stretching strain. The crystallinity is approximately linearly increasing with the applied stretching force. However, the change of the unit-cell orientation degree with c-axis along the fiber axis behaves as a fast stage and an approximately unchanged stage during the in situ stretching process. All these experimental phenomena confirm that the microstructure of the degummed silk fibers can be well explained by the model of oriented ß-sheet structure with a banded feature.


Assuntos
Bombyx/química , Modelos Moleculares , Seda/química , Animais , Estrutura Secundária de Proteína , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...