Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169679, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163608

RESUMO

The information on how plant populations respond genetically to climate warming is scarce. Here, landscape genomic and machine learning approaches were integrated to assess genetic response of 10 wild barley (Hordeum vulgare ssp. spontaneum; WB) populations in the past and future, using whole genomic sequencing (WGS) data. The WB populations were sampled in 1980 and again in 2008. Phylogeny of accessions was roughly in conformity with sampling sites, which accompanied by admixture/introgressions. The 28-y climate warming resulted in decreased genetic diversity, increased selection pressure, and an increase in deleterious single nucleotide polymorphism (dSNP) numbers, heterozygous deleterious and total deleterious burdens for WB. Genome-environment associations identified some candidate genes belonging to peroxidase family (HORVU2Hr1G057450, HORVU4Hr1G052060 and HORVU4Hr1G057210) and heat shock protein 70 family (HORVU2Hr1G112630). The gene HORVU2Hr1G120170 identified by selective sweep analysis was under strong selection during the climate warming of the 28-y, and its derived haplotypes were fixed by WB when faced with the 28-y increasingly severe environment. Temperature variables were found to be more important than precipitation variables in influencing genomic variation, with an eco-physiological index gdd5 (growing degree-days at the baseline threshold temperature of 5 °C) being the most important determinant. Gradient forest modelling revealed higher predicted genomic vulnerability in Sede Boqer under future climate scenarios at 2041-2070 and 2071-2100. Additionally, estimates of effective population size (Ne) tracing back to 250 years indicated a forward decline in all populations over time. Our assessment about past genetic response and future vulnerability of WB under climate warming is crucial for informing conservation efforts for wild cereals and rational use strategies.


Assuntos
Hordeum , Hordeum/genética , Clima , Genômica , Temperatura , Genes de Plantas , Variação Genética
2.
Front Plant Sci ; 13: 1063988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531346

RESUMO

Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.

3.
J Adv Res ; 42: 135-148, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513409

RESUMO

INTRODUCTION: Until now, the most likely direct maternal progenitor (AABB) for common wheat (AABBDD) has yet to be identified. Here, we try to solve this particular problem with the specificity of a novel gene family in wheat and by using large population of rare germplasm resources. OBJECTIVES: Dissect the novelty of TaCAF1Ia subfamily in wheat. Exploit the conservative and specific characteristics of TaCAF1Ia1 to reveal the origin of the maternal progenitor for common wheat. METHODS: Phylogenetic and collinear analysis of TaCAF1 genes were performed to identify the evolutionary specificity of TaCAF1Ia subfamily. The large-scale expression patterns and interaction patterns analysis of CCR4-NOT complex were used to clarify the expressed and structural specificity of TaCAF1Ia subfamily in wheat. The population resequencing and phylogeny analysis of the TaCAF1Ia1 were utilized for the traceability analysis to understand gene-pool exchanges during the transferring and subsequent development from tetraploid to hexaploidy wheat. RESULTS: TaCAF1Ia is a novel non-typical CAF1 subfamily without DEDD (Asp-Glu-Asp-Asp) domain, whose members were extensively duplicated in wheat genome. The replication events had started and constantly evolved from ancestor species. Specifically, it was found that a key member CAF1Ia1 was highly specialized and only existed in the subB genome and S genome. Unlike CAF1s reported in other plants, TaCAF1Ia genes may be new factors for anther development. These atypical TaCAF1s could also form CCR4-NOT complex in wheat but with new interaction sites. Utilizing the particular but conserved characteristics of the TaCAF1Ia1 gene, the comparative analysis of haplotypes composition for TaCAF1Ia1 were identified among wheat populations with different ploidy levels. Based on this, the dual-lineages origin model of maternal progenitor for common wheat and potential three-lineages domestication model for cultivated tetraploid wheat were proposed. CONCLUSION: This study brings fresh insights for revealing the origin of wheat and the function of CAF1 in plants.


Assuntos
Evolução Molecular , Triticum , Triticum/genética , Filogenia , Tetraploidia , Domesticação
4.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082129

RESUMO

Sympatric speciation (SS) has been contentious since the idea was suggested by Darwin. Here, we show in wild barley SS due to geologic and edaphic divergence in "Evolution Plateau," Upper Galilee, Israel. Our whole genome resequencing data showed SS separating between the progenitor old Senonian chalk and abutting derivative young Pleistocene basalt wild barley populations. The basalt wild barley species unfolds larger effective population size, lower recombination rates, and larger genetic diversity. Both species populations show similar descending trend ∼200,000 yr ago associated with the last glacial maximum. Coalescent demography analysis indicates that SS was local, primary, in situ, and not due to a secondary contact from ex situ allopatric population. Adaptive divergent putatively selected genes were identified in both populations. Remarkably, disease resistant genes were selected in the wet basalt population, and genes related to flowering time, leading to temporal reproductive isolation, were selected in the chalk population. The evidence substantiates adaptive ecological SS in wild barley, highlighting the genome landscape during SS with gene flow, due to geologic-edaphic divergence.


Assuntos
Hordeum/genética , Simpatria/genética , Ecossistema , Fluxo Gênico/genética , Especiação Genética , Variação Genética/genética , Genoma/genética , Israel , Seleção Genética/genética , Solo/química
5.
Theor Appl Genet ; 133(7): 2307-2321, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32405768

RESUMO

KEY MESSAGE: An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38 Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.


Assuntos
Ascomicetos/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Alelos , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Limite de Detecção , Modelos Genéticos , Família Multigênica , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
6.
Plant J ; 103(1): 279-292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073701

RESUMO

Plants produce numerous metabolites that are important for their development and growth. However, the genetic architecture of the wheat metabolome has not been well studied. Here, utilizing a high-density genetic map, we conducted a comprehensive metabolome study via widely targeted LC-MS/MS to analyze the wheat kernel metabolism. We further combined agronomic traits and dissected the genetic relationship between metabolites and agronomic traits. In total, 1260 metabolic features were detected. Using linkage analysis, 1005 metabolic quantitative trait loci (mQTLs) were found distributed unevenly across the genome. Twenty-four candidate genes were found to modulate the levels of different metabolites, of which two were functionally annotated by in vitro analysis to be involved in the synthesis and modification of flavonoids. Combining the correlation analysis of metabolite-agronomic traits with the co-localization of methylation quantitative trait locus (mQTL) and phenotypic QTL (pQTL), genetic relationships between the metabolites and agronomic traits were uncovered. For example, a candidate was identified using correlation and co-localization analysis that may manage auxin accumulation, thereby affecting number of grains per spike (NGPS). Furthermore, metabolomics data were used to predict the performance of wheat agronomic traits, with metabolites being found that provide strong predictive power for NGPS and plant height. This study used metabolomics and association analysis to better understand the genetic basis of the wheat metabolism which will ultimately assist in wheat breeding.


Assuntos
Grão Comestível/metabolismo , Característica Quantitativa Herdável , Triticum/metabolismo , Genes de Plantas/genética , Estudos de Associação Genética , Metabolômica , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Triticum/genética
7.
PLoS One ; 15(2): e0229159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059028

RESUMO

Durum wheat, genetic resource with favorable alleles is considered as natural gene pool for wheat breeding. Kernel size and weight are important factors affecting grain yield in crops. Here, association analysis was performed to dissect the genetic constitution of kernel-related traits in 150 lines collected from 46 countries and regions using a set of EST-derived and genome-wide SNP markers with five consecutive years of data. Total 109 significant associations for eight kernel-related traits were detected under a mix linear model, generating 54 unique SNP markers distributed on 13 of 14 chromosomes. Of which, 19 marker-trait associations were identified in two or more environments, including one stable and pleiotropic SNP BE500291_5_A_37 on chromosome 5A correlated with six kernel traits. Although most of our SNP loci were overlapped with the previously known kernel weight QTLs, several novel loci for kernel traits in durum were reported. Correlation analysis implied that the moderate climatic variables during growth and development of durum are needed for the large grain size and high grain weight. Combined with our previous studies, we found that chromosome 5A might play an important role in durum growth and development.


Assuntos
Polimorfismo de Nucleotídeo Único , Triticum/genética , Cromossomos de Plantas/genética , Fenótipo , Triticum/crescimento & desenvolvimento
8.
Plant Biotechnol J ; 18(8): 1722-1735, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31930656

RESUMO

The marriage of metabolomic approaches with genetic design has proven a powerful tool in dissecting diversity in the metabolome and has additionally enhanced our understanding of complex traits. That said, such studies have rarely been carried out in wheat. In this study, we detected 805 metabolites from wheat kernels and profiled their relative contents among 182 wheat accessions, conducting a metabolite-based genome-wide association study (mGWAS) utilizing 14 646 previously described polymorphic SNP markers. A total of 1098 mGWAS associations were detected with large effects, within which 26 candidate genes were tentatively designated for 42 loci. Enzymatic assay of two candidates indicated they could catalyse glucosylation and subsequent malonylation of various flavonoids and thereby the major flavonoid decoration pathway of wheat kernel was dissected. Moreover, numerous high-confidence genes associated with metabolite contents have been provided, as well as more subdivided metabolite networks which are yet to be explored within our data. These combined efforts presented the first step towards realizing metabolomics-associated breeding of wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Flavonoides , Metaboloma , Metabolômica , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética
9.
Funct Integr Genomics ; 20(1): 51-61, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31302787

RESUMO

Fusarium head blight (FHB), a prevalent disease of bread wheat (Triticum aestivum L.) caused by Fusarium graminearum, leads to considerable losses of yield and quality in wheat production. MicroRNAs (miRNAs) are important regulators of plant defense responses. Here, to better understand the F. graminearum-responsive miRNAs, we constructed sRNA libraries for wheat cultivar Sumai 3 challenged with F. graminearum and sterile water, respectively. As a result, a total of 203 known miRNAs from 46 families and 68 novel miRNAs were identified. Among them, 18 known and six novel miRNAs were found to be differentially expressed between the F. graminearum-infected samples and the controls and thus were considered to be responsive to F. graminearum. The expression patterns of eight miRNAs were further validated by stem-loop qRT-PCR. Meanwhile, target genes were validated by degradome sequencing. Integrative analysis of the differentially expressed miRNAs and their targets revealed complex miRNA-mediated regulatory networks involved in the response of wheat to F. graminearum infection. Our findings are expected to facilitate a better understanding of the miRNA regulation in wheat-F. graminearum interaction.


Assuntos
Fusarium , MicroRNAs/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Análise de Sequência de RNA , Triticum/metabolismo
10.
Sci Rep ; 9(1): 18823, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827117

RESUMO

Grain filling is an important growth process in formation of yield and quality for barley final yield determination. To explore the grain development behavior during grain filling period in barley, a high-density genetic map with 1962 markers deriving from a doubled haploid (DH) population of 122 lines was used to identify dynamic quantitative trait locus (QTL) for grain filling rate (GFR) and five grain size traits: grain area (GA), grain perimeter (GP), grain length (GL), grain width (GW) and grain diameter (GD). Unconditional QTL mapping is to detect the cumulative effect of genetic factors on a phenotype from development to a certain stage. Conditional QTL mapping is to detect a net effect of genetic factors on the phenotype at adjacent time intervals. Using unconditional, conditional and covariate QTL mapping methods, we successfully detected 34 major consensus QTLs. Moreover, certain candidate genes related to grain size, plant height, yield, and starch synthesis were identified in six QTL clusters, and individual gene was specifically expressed in different grain filling stages. These findings provide useful information for understanding the genetic basis of the grain filling dynamic process and will be useful for molecular marker-assisted selection in barley breeding.


Assuntos
Hordeum/genética , Locos de Características Quantitativas , Sementes/genética , Mapeamento Cromossômico , Grão Comestível , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento
11.
Front Plant Sci ; 10: 469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105718

RESUMO

Grain size and weight are crucial components of barley yield and quality and are the target characteristics of domestication and modern breeding. Despite this, little is known about the genetic and molecular mechanisms of grain size and weight in barley. Here, we evaluated nine traits determining grain size and weight, including thousand grain weight (Tgw), grain length (Gl), grain width (Gw), grain length-width ratio (Lwr), grain area (Ga), grain perimeter (Gp), grain diameter (Gd), grain roundness (Gr), and factor form density (Ffd), in a double haploid (DH) population for three consecutive years. Using five mapping methods, we successfully identified 60 reliable QTLs and 27 hotspot regions that distributed on all chromosomes except 6H which controls the nine traits of grain size and weight. Moreover, we also identified 164 barley orthologs of 112 grain size/weight genes from rice, maize, wheat and 38 barley genes that affect grain yield. A total of 45 barley genes or orthologs were identified as potential candidate genes for barley grain size and weight, including 12, 20, 9, and 4 genes or orthologs for barley, rice, maize, and wheat, respectively. Importantly, 20 of them were located in the 14 QTL hotspot regions on chromosome 1H, 2H, 3H, 5H, and 7H, which controls barley grain size and weight. These results indicated that grain size/weight genes of other cereal species might have the same or similar functions in barley. Our findings provide new insights into the understanding of the genetic basis of grain size and weight in barley, and new information to facilitate high-yield breeding in barley. The function of these potential candidate genes identified in this study are worth exploring and studying in detail.

12.
Sci Rep ; 9(1): 4431, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872632

RESUMO

Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Hordeum/genética , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Hordeum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/crescimento & desenvolvimento
13.
Plant Cell Physiol ; 60(2): 285-302, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351427

RESUMO

Plant organ development to a specific size and shape is controlled by cell proliferation and cell expansion. Here, we identify a novel Myb-like Arabidopsis gene, Development Related Myb-like1 (DRMY1), which controls cell expansion in both vegetative and reproductive organs. DRMY1 is strongly expressed in developing organs and its expression is reduced by ethylene while it is induced by ABA. DRMY1 has a Myb-like DNA-binding domain, which is predominantly localized in the nucleus and does not exhibit transcriptional activation activity. The loss-of-function T-DNA insertion mutant drmy1 shows reduced organ growth and cell expansion, which is associated with changes in the cell wall matrix polysaccharides. Interestingly, overexpression of DRMY1 in Arabidopsis does not lead to enhanced organ growth. Expression of genes involved in cell wall biosynthesis/remodeling, ribosome biogenesis and in ethylene and ABA signaling pathways is changed with the deficiency of DRMY1. Our results suggest that DRMY1 plays an essential role in organ development by regulating cell expansion either directly by affecting cell wall architecture and/or cytoplasmic growth or indirectly through the ethylene and/or ABA signaling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Sementes/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Flores/crescimento & desenvolvimento , Germinação/fisiologia , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Alinhamento de Sequência
14.
Front Plant Sci ; 9: 1683, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524459

RESUMO

The agronomic traits, including morphological and yield component traits, are important in barley breeding programs. In order to reveal the genetic foundation of agronomic traits of interest, in this study 122 doubled haploid lines from a cross between cultivars "Huaai 11" (six-rowed and dwarf) and "Huadamai 6" (two-rowed) were genotyped by 9680 SNPs and phenotyped 14 agronomic traits in 3 years, and the two datasets were used to conduct multi-locus genome-wide association studies. As a result, 913 quantitative trait nucleotides (QTNs) were identified by five multi-locus GWAS methods to be associated with the above 14 traits and their best linear unbiased predictions. Among these QTNs and their adjacent genes, 39 QTNs (or QTN clusters) were repeatedly detected in various environments and methods, and 10 candidate genes were identified from gene annotation. Nineteen QTNs and two genes (sdw1/denso and Vrs1) were previously reported, and eight candidate genes need to be further validated. The Vrs1 gene, controlling the number of rows in the spike, was found to be associated with spikelet number of main spike, spikelet number per plant, grain number per plant, grain number per spike, and 1,000 grain weight in multiple environments and by multi-locus GWAS methods. Therefore, the above results evidenced the feasibility and reliability of genome-wide association studies in doubled haploid population, and the QTNs and their candidate genes detected in this study are useful for marker-assisted selection breeding, gene cloning, and functional identification in barley.

15.
Proc Natl Acad Sci U S A ; 115(52): 13312-13317, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530679

RESUMO

Fifteen full-length wheat grain avenin-like protein coding genes (TaALP) were identified on chromosome arms 7AS, 4AL, and 7DS of bread wheat with each containing five genes. Besides the a- and b-type ALPs, a c type was identified in the current paper. Both a and b types have two subunits, named x and y types. The five genes on each of the three chromosome arms consisted of two x-type genes, two y-type genes, and one c-type gene. The a-type genes were typically of 520 bp in length, whereas the b types were of 850 bp in length, and the c type was of 470 bp in length. The ALP gene transcript levels were significantly up-regulated in Blumeria graminis f. sp. tritici (Bgt)-infected wheat grain caryopsis at early grain filling. Wild emmer wheat [(WEW), Triticum dicoccoides] populations were focused on in our paper to identify allelic variations of ALP genes and to study the influence of natural selection on certain alleles. Consequently, 25 alleles were identified for TdALP-bx-7AS, 13 alleles were identified for TdALP-ax-7AS, 7 alleles were identified for TdALP-ay-7AS, and 4 alleles were identified for TdALP-ax-4AL Correlation studies on TdALP gene diversity and ecological stresses suggested that environmental factors contribute to the ALP polymorphism formation in WEW. Many allelic variants of ALPs in the endosperm of WEW are not present in bread wheat and therefore could be utilized in breeding bread wheat varieties for better quality and elite plant defense characteristics.


Assuntos
Prolaminas/genética , Triticum/genética , Alelos , Evolução Biológica , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Variação Genética/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética , Prolaminas/metabolismo , Seleção Genética/genética
16.
PLoS One ; 13(10): e0206226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352102

RESUMO

The canopy leaves including the top three, i.e., the flag, the 2nd and 3rd from the top, are important for photosynthesis and grain yield of wheat. Molecular markers associated with traits of these leaves should be helpful for the high-yielding breeding. In this study, 1366 single nucleotide polymorphisms (SNP) markers covering the whole genome of durum wheat were used to genotype 150 cultivars collected from 46 countries and regions in the world. Leaf length, leaf width and chlorophyll content of the top three leaves were measured, respectively, in three consecutive years. Association analyses were performed on the leaf traits and SNP markers. A total of 120 SNP marker associations were detected on 13 of the 14 chromosomes. Among these markers, 83 were associated with the canopy leaf traits, 10 with 1000-grain weight, and 29 with kernel number per spike. This study is helpful for better understanding the potential and genetic basis of functional leaves, and facilitates pyramiding of the favorable alleles using marker assisted selection for ideal plant-type and high photosynthesis efficiency in durum wheat breeding.


Assuntos
Marcadores Genéticos/genética , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/genética , Frequência do Gene , Estudos de Associação Genética/métodos , Genoma de Planta/genética , Genótipo , Fenótipo , Folhas de Planta/anatomia & histologia , Triticum/anatomia & histologia
17.
Front Plant Sci ; 9: 1196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154817

RESUMO

Genome-wide association studies (GWAS) have been widely used to dissect the complex biosynthetic processes of plant metabolome. Most studies have used single-locus GWAS approaches, such as mixed linear model (MLM), and little is known about more efficient algorithms to implement multi-locus GWAS. Here, we report a comprehensive GWAS of 20 free amino acid (FAA) levels in kernels of bread wheat (Triticumaestivum L.) based on 14,646 SNPs by six multi-locus models (FASTmrEMMA, FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and pLARmEB). Our results showed that 328 significant quantitative trait nucleotides (QTNs) were identified in total (38, 8, 92, 45, 117, and 28, respectively, for the above six models). Among them, 66 were repeatedly detected by more than two models, and 155 QTNs appeared only in one model, indicating the reliability and complementarity of these models. We also found that the number of significant QTNs for different FAAs varied from 8 to 41, which revealed the complexity of the genetic regulation of metabolism, and further demonstrated the necessity of the multi-locus GWAS. Around these significant QTNs, 15 candidate genes were found to be involved in FAA biosynthesis, and one candidate gene (TraesCS1D01G052500, annotated as tryptophan decarboxylase) was functionally identified to influence the content of tryptamine in vitro. Our study demonstrated the power and efficiency of multi-locus GWAS models in crop metabolome research and provided new insights into understanding FAA biosynthesis in wheat.

18.
BMC Genomics ; 19(1): 333, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739311

RESUMO

BACKGROUND: 337S is a novel bi-pole-photo-thermo-sensitive genic male sterile line in wheat, and sensitive to both long day length/high temperature and short day length/low temperature condition. Although the regulatory function of MicroRNAs (miRNAs) in reproductive development has been increasingly studied, their roles in pre-meiotic and meiotic cells formation of plants have not been clearly explored. Here, we explored the roles of miRNAs in regulating male sterility of 337S at short day length/low temperature condition. RESULTS: Small RNA sequencing and degradome analyses were employed to identify miRNAs and their targets in the 337S whose meiotic cells collapsed rapidly during male meiotic prophase, resulting in failure of meiosis at SL condition. A total of 102 unique miRNAs were detected. Noticeably, the largest miRNA family was MiR1122. The target CCR4-associated factor 1 (CAF1) of miR2275, a subunit of the Carbon Catabolite Repressed 4-Negative on TATA-less (CCR4-NOT) complex, contributes to the process of early meiosis, and was first identified here. Further studies showed that the expression of several pivotal anther-related miRNAs was altered in 337S at SL condition, especially tae-miR1127a, which may be related to male sterility of 337S. Here, we also identified a new member of SWI/SNF factors SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A, member 3-like 3 (SMARCA3L3) targeted by tae-miR1127a, whose function might be involved in faithful progression of meiosis in male reproductive cells. CONCLUSION: The miRNA-target interactions of tae-miR2275-CAF1 and tae-miR1127a-SMARCA3L3 might be involved in regulating male fertility in 337S. Our results also implied that multiple roles for SMARCA3L3 and CAF1 in DNA repair and transcriptional regulation jointly orchestrated a tight and orderly system for maintaining chromatin and genome integrity during meiosis.


Assuntos
MicroRNAs/metabolismo , Triticum/genética , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Meiose/genética , MicroRNAs/química , MicroRNAs/genética , Fenótipo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma , Triticum/crescimento & desenvolvimento
19.
Breed Sci ; 68(5): 524-535, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30697113

RESUMO

Low molecular weight glutenin subunits (LMW-GS) play an important role in determining the bread-making characteristics of dough in the end-use quality of wheat. In this study, A total of 149 worldwide-originated durum wheat were used to analyze the composition of LMW-GS using MALDI-TOF-MS. Based on the allelic variation of glutenin subunits, the genetic diversity was evaluated for the 149 durum wheat. Five types of alleles were identified at the Glu-A3 locus with Glu-A3e, Glu-A3a/c, Glu-A3f, Glu-A3d and Glu-A3b accounting for 43.0%, 16.1%, 12.8%, 10.1% and 7.4 % of the accessions, respectively. Five types of alleles were identified at the Glu-B3 locus: Glu-B3d (60.4%), Glu-B3b (6.0%), Glu-B3c (6.0%), Glu-B3h (2.7%) and Glu-B3f (0.7%). Two novel alleles encoding abnormal subunits 40500 Da and 41260 Da were identified at the Glu-A3 and Glu-B3 loci, respectively. Further studies are needed to match these novel alleles to previously discovered novel alleles. Moreover, the genetic diversity analysis indicated that great genetic variation existed in durum wheat among encoding loci of glutenin subunits, released periods of varieties and different geographical origins. The results provide more important information of potential germplasm for the improvement of durum wheat and common wheat.

20.
Front Plant Sci ; 9: 1921, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671073

RESUMO

Barley occupies the widest ecological area among the major cereal crops, thereby generating a high potential for adaptive genetic diversity against various environmental factors. Colored barley such as black grain barley has been suggested to result from environmental adaptation to biotic and abiotic stresses. Using one double haploid population (433 lines), plus three F5 recombinant inbred line (RIL) populations (1,009 lines), the black lemma and pericarp (Blp) gene was mapped between two Insertion/deletion (Indel) markers MC_1570156 and MC_162350 with a physical distance of 0.807 Mb, containing 21 annotated genes in the mapped interval. Whole-genome re-sequencing was performed on two Tibetan wild barley lines (X1 and W1) with black grain phenotype. The probable candidate genes for Blp were discussed based on gene functional annotation and gene sequence variation analyses. Thirteen polymorphic Indel markers covering the target genetic region were used to analyze 178 barley accessions including 49 black husk entries. Genotype-based clustering analyses showed that the black landraces of different geographical background may have evolved from a single origin. Our study represents a significant improvement on the genetic mapping of Blp and would facilitate future study on the characterization of the genetic basis underlying this interesting agronomic trait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...