Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 341: 122351, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876719

RESUMO

The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.

2.
Heliyon ; 9(3): e13984, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925554

RESUMO

VFAs accumulation in anaerobic digestion systems can lead to disturbance of the acid base balance, which has brought major challenges for methane production. Meanwhile, less research explored the potential of biochar derived from wood wastes of oriental plane tree (Platanus orientalis L.) for stimulating methanization in mesophilic anaerobic digestion. In this study, the effects of pyrochar and hydrochar derived from sawdust of oriental plane tree on mesophilic anaerobic digestion of swine manure were compared for the first time. Fourier infrared transform analysis indicated that more functional groups existed on the surface of hydrochar, whereas higher ash content and BET specific surface area were found in pyrochar. The maximum methane production rate during anaerobic digestion was observed in the pyrochar treatment, which increased by 59.5% compared with the control without biochar. Although stimulative effects on dissolved organic carbon and volatile fatty acids production were both observed in the pyrochar and hydrochar treatments, the pyrochar treatment was much easier to trigger multipath methanogenesis and direct interspecific electron transport and subdue propionic acid accumulation compared to the hydrochar treatment. Moreover, redundancy analysis indicated that the variations in acetic acid and dissolved organic carbon were mostly associated with microbial succession. These results suggest that pyrochar has better promoting effects than HC in terms of methane generation and propionic acid inhibition alleviation owing to its special porous structures, functional groups (e.g., C=O, C-O and O-H), and physicochemical properties. These excellent properties play a greater role in recruiting functional archaea and bacteria to regulate the levels of volatile fatty acids and dissolved organic carbon to enhance the methane yield of anaerobic digestion. This study provides novel and valuable information for further engineering applications of pyrochar and hydrochar derived from sawdust of oriental plane tree in energy production and environmental waste treatment.

3.
Mater Today Bio ; 16: 100445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36212906

RESUMO

Lignocellulose utilization has been gaining great attention worldwide due to its abundance, accessibility, renewability and recyclability. Destruction and dissociation of the cross-linked, hierarchical structure within cellulose hemicellulose and lignin is the key procedure during chemical utilization of lignocellulose. Of the pretreatments, biological treatment, which can effectively target the complex structures, is attractive due to its mild reaction conditions and environmentally friendly characteristics. Herein, we report a comprehensive review of the current biological pretreatments for lignocellulose dissociation and their corresponding degradation mechanisms. Firstly, we analyze the layered, hierarchical structure of cell wall, and the cross-linked network between cellulose, hemicellulose and lignin, then highlight that the cracking of ß-aryl ether is considered the key to lignin degradation because of its dominant position. Secondly, we explore the effect of biological pretreatments, such as fungi, bacteria, microbial consortium, and enzymes, on substrate structure and degradation efficiency. Additionally, combining biological pretreatment with other methods (chemical methods and catalytic materials) may reduce the time necessary for the whole process, which also help to strengthen the lignocellulose dissociation efficiency. Thirdly, we summarize the related applications of lignocellulose, such as fuel production, chemicals platform, and bio-pulping, which could effectively alleviate the energy pressure through bioconversion into high value-added products. Based on reviewing of current progress of lignocellulose pretreatment, the challenges and future prospects are emphasized. Genetic engineering and other technologies to modify strains or enzymes for improved biotransformation efficiency will be the focus of future research.

4.
Bioresour Technol ; 294: 122131, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541977

RESUMO

Hyperthermophilic pretreatment composting (HPC) is superior to traditional composting (CK) with shortened maturity period and enhanced humification degree. However, the chemical and structural evolution of humic substances (HS) at the molecular level is not known. In this study, the impact of hyperthermophilic pretreatment (90 °C, 4 h) on the content and chemical composition of HS during composting were investigated. The HS content of the final compost was 87.8 g/kg and 76.7 g/kg in HPC and CK, respectively. Significantly higher humic acid/fulvic acid ratio (1.27 in HPC v.s. 0.77 in CK) was observed in HPC. 13C NMR spectroscopic data showed a higher aromatics percentage and earlier enrichment of aromatic structures in HS extracted from HPC than CK. Intensified humification of HPC was related to the increased levels of HS precursors and degradation of lignocellulose. Redundancy analysis demonstrated that aromatic C, phenolic C and O-alkyl C can be used for evaluation of the humification degree.


Assuntos
Compostagem , Oryza , Animais , Substâncias Húmicas , Esterco , Solo , Suínos
5.
Bioresour Technol ; 272: 521-528, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391845

RESUMO

Hyperthermophilic pretreatment composting (HPC) is superior to traditional composting (TC) with shortened maturity period and increased nitrogen (N) retention. However, the mechanism associated with N retention in HPC remains unclear. In this study, we compared the impact of HPC and TC on N retention, and found the proportion of N retained in the final compost was 83.3% and 67.2% for HPC and TC, respectively. Decreased ammonification rate, urease and protease activities together with an elevated temperature were found in HPC. Illumina amplicon sequencing showed that HPC caused a major decline in microbial community richness and diversity in the thermophilic phase. Notably, bacterial (Pseudomonas and Bacillus) and fungal ammonifiers (Acremonium, Alternaria and Penicillium) decreased remarkably in HPC during this phase. Changes in the microbial community could be related to unfavorable modifications of environment from HPC, and which resulted in decreased ammonification and enzyme activities and improved N retention.


Assuntos
Amônia/metabolismo , Compostagem , Microbiota , Nitrogênio/metabolismo , Bacillus/metabolismo , Fungos/metabolismo , Pseudomonas/metabolismo , Solo
6.
Materials (Basel) ; 11(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213087

RESUMO

The effects of soil burial on the biodegradation of biocomposite flower pots (BFP) made from straw fiber (SF) and hydrolyzed soy protein isolate/urea/formaldehyde (HSPI/U/F) copolymer resin were studied in detail. The microstructure, crystallinity, functional groups, mechanical, degradation and thermal property of the prepared SF with HSPI/U/F copolymer resin have been studied, and the degradation mechanism was also elucidated. XRD results showed that the bond breakage between SF and HSPI/U/F copolymer resin induced a decrease in relative degradation-resistant crystal structures. FTIR spectra showed that the methylolated HSPI units could form a cross-linking network with U/F and SF. The BFP degradation after soil burial was mainly attributed to the effects of microorganisms. The degradation products were environmentally friendly, because they were degradable and could fertilize the soil. In addition, the U/F adhesives were slightly degraded by the microorganisms due to the HSPI in the pots. The TG and DSC results showed that the molecular motion of the BFP matrix could be restricted by the degradation action and the content of HSPI, resulting in decreased crystallization enthalpy and showing good thermal property. The tensile strength of different reinforced samples was not significantly reduced in comparison to U/F resin, and still kept good mechanical performance. Thus, the prepared SF reinforced HSPI/U/F copolymer resins could have good potential for use in the field of biodegradable flower pots because of their good thermal property, mechanical property, biodegradability, and relatively low cost.

7.
Entropy (Basel) ; 21(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33266735

RESUMO

It is difficult to recover the residual heat from flue gas when supercritical carbon dioxide (S-CO2) cycle is used for a coal fired power plant, due to the higher CO2 temperature in tail flue and the limited air temperature in air preheater. The combined cycle is helpful for residual heat recovery. Thus, it is important to build an efficient bottom cycle. In this paper, we proposed a novel exergy destruction control strategy during residual heat recovery to equal and minimize the exergy destruction for different bottom cycles. Five bottom cycles are analyzed to identify their differences in thermal efficiencies (ηth,b), and the CO2 temperature entering the bottom cycle heater (T4b) etc. We show that the exergy destruction can be minimized by a suitable pinch temperature between flue gas and CO2 in the heater via adjusting T4b. Among the five bottom cycles, either the recompression cycle (RC) or the partial cooling cycle (PACC) exhibits good performance. The power generation efficiency is 47.04% when the vapor parameters of CO2 are 620/30 MPa, with the double-reheating-recompression cycle as the top cycle, and RC as the bottom cycle. Such efficiency is higher than that of the supercritical water cycle power plant.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(1): 212-6, 2017 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30196589

RESUMO

This paper aimed to reveal the degradation behavior of a new type of biodegradable containers. The biodegradable containers, which was made of modified soybean adhesive and straw, was processed in situ biodegradation under natural condition. The physicochemical property and microstructure of straw nursery containers treated and untreated were characterized with Cellulose Tester, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope - Energy Dispersive X-ray Spectroscopy (SEM-EDS), and Thermo-gravimetry Analysis (TGA), respectively. The results indicated that the content of cellulose, hemicellulose and lignin of treated specimen decreased to 21.43%, 21.41% and 9.54% from 29.03%, 30.44% and 12.52%, respectively, comparing with those of untreated straw nursery container. FTIR analysis revealed that the ester and fat bond have been ruptured, and the aromatic characteristic peak became weakened. SEM-EDS spectrum showed the microfibril chain in the container has been fragmentation, and the soybean adhesive was also degradation. The surface of container appeared oxidization degradation. TGA analysis showed that a large number of small molecules have been produced in the process of degradation and the thermo-stability of treated samples improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA