Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748488

RESUMO

The emergence of flexible fabric-based pneumatic actuators (FPAs) with pre-programmable motion capabilities, enhanced security and versatile interaction features significantly advances the construction of sophisticated soft robotic systems, owing to their enhanced security and versatile interaction features. Despite these promising attributes, the commercial viability of FPA products faces a considerable amount of challenges, primarily stemming from the scarcity of highly deformable fabric structures and the availability of industrial fabrication approaches. Taking inspiration from the anisotropic nature of lobster antennae, we propose a scalable and economical strategy to fabricate functional FPAs using nonwoven fabric material with superior mechanical anisotropy. This innovative method involves the adoption of tunable inelastic constrained wires sewn onto extensible nonwoven fabrics with regular wrinkles. This nonwoven fabric-based pneumatic actuator (NFPA) demonstrates specific motion profiles with curvature of over 0.6 cm-1 and output forces of over 140 cN under adjustable pressure conditions. Guided by the constrained wire combinations, NFPA enables diverse programmable motions like spiraling, assistance, and grasping. Furthermore, NFPA incorporated with specific sensors exhibits significant potential in wearable devices with real-time environmental detection for rehabilitation applications. Our work contributes a distinctive insight into the design of programmable NFPAs and enlightens an arena toward versatile soft robotic applications.

2.
Macromol Rapid Commun ; : e2400151, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635599

RESUMO

The rapid growth of the Internet of Things and wearable sensors has led to advancements in monitoring technology in the field of health. One such advancement is the development of wearable respiratory sensors, which offer a new approach to real-time respiratory monitoring compared to traditional methods. However, the energy consumption of these sensors raises concerns about environmental pollution. To address the issue, this study proposes the use of a triboelectric nanogenerator (TENG) as a sustainable energy source. The electrical conductivity of the TENG is improved by incorporating chitosan and carbon nanotubes, with the added benefit of chitosan's biodegradability reducing negative environmental impact. A wireless intelligent respiratory monitoring system (WIRMS) is then introduced, which utilizes a degradable triboelectric nanogenerator for real-time respiratory monitoring, diagnosis, and prevention of obstructive respiratory diseases. WIRMS offers stable and highly accurate respiratory information monitoring, while enabling real-time and nondestructive transmission of information. In addition, machine learning technology is used for sleep respiration state analysis. The potential applications of WIRMS extend to wearables, medical monitoring and sports monitoring, thereby presenting innovative ideas for modern medical and sports monitoring.

3.
iScience ; 27(4): 109615, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632997

RESUMO

In the smart era, big data analysis based on sensor units is important in intelligent motion. In this study, a dance sports and injury monitoring system (DIMS) based on a recyclable flexible triboelectric nanogenerator (RF-TENG) sensor module, a data processing hardware module, and an upper computer intelligent analysis module are developed to promote intelligent motion. The resultant RF-TENG exhibits an ultra-fast response time of 17 ms, coupled with robust stability demonstrated over 4200 operational cycles, with 6% variation in output voltage. The DIMS enables immersive training by providing visual feedback on sports status and interacting with virtual games. Combined with machine learning (K-nearest neighbor), good classification results are achieved for ground-jumping techniques. In addition, it shows some potential in sports injury prediction (i.e., ankle sprains, knee hyperextension). Overall, the sensing system designed in this study has broad prospects for future applications in intelligent motion and healthcare.

4.
ACS Appl Mater Interfaces ; 16(13): 16788-16799, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520339

RESUMO

Smart wearables with the capability for continuous monitoring, perceiving, and understanding human tactile and motion signals, while ensuring comfort, are highly sought after for intelligent healthcare and smart life systems. However, concurrently achieving high-performance tactile sensing, long-lasting wearing comfort, and industrialized fabrication by a low-cost strategy remains a great challenge. This is primarily due to critical research gaps in novel textile structure design for seamless integration with sensing elements. Here, an all-in-one biaxial insertion knit architecture is reported to topologically integrate sensing units within double-knit loops for the fabrication of a large-scale tactile sensing textile by using low-cost industrial manufacturing routes. High sensitivity, stability, and low hysteresis of arrayed sensing units are achieved through engineering of fractal structures of hierarchically patterned piezoresistive yarns via blistering and twisting processing. The as-prepared tactile sensing textiles show desirable sensing performance and robust mechanical property, while ensuring excellent conformability, tailorability, breathability (288 mm s-1), and moisture permeability (3591 g m-2 per day) for minimizing the effect on wearing comfort. The multifunctional applications of tactile sensing textiles are demonstrated in continuously monitoring human motions, tactile interactions with the environment, and recognizing biometric gait. Moreover, we also demonstrate that machine learning-assisted sensing textiles can accurately predict body postures, which holds great promise in advancing the development of personalized healthcare robotics, prosthetics, and intelligent interaction devices.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Têxteis , Movimento (Física) , Tato
5.
ACS Appl Mater Interfaces ; 15(51): 59989-60001, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085924

RESUMO

Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.


Assuntos
Hipertelorismo , Hipospadia , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Simulação por Computador , Umidade
6.
iScience ; 26(11): 108126, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915601

RESUMO

The application of wearable intelligent systems toward human-computer interaction has received widespread attention. It is still desirable to conveniently promote health and monitor sports skills for disabled people. Here, a wireless intelligent sensing system (WISS) has been developed, which includes two ports of wearable flexible triboelectric nanogenerator (WF-TENG) sensing and an upper computer digital signal receiving intelligent processing. The WF-TENG sensing port is connected by the WF-TENG sensor and flexible printed circuit (FPC). Due to its flexibility, the WF-TENG sensing port can be freely adhered on the surface of human skin. The WISS can be applied to entertainment reaction training based on human-computer interaction, and to the technical judgment and analysis on wheelchair curling sport. This work provides new application opportunities for wearable devices in the fields of sports skills monitoring, sports assistive devices and health promotion for disabled people.

7.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37832528

RESUMO

The use of green intelligent sensing systems which are based on triboelectric nanogenerators have sparked a surge of research in recent years. The development has made significant contributions to the field of promoting human health. However, the integration of an intelligent sensing system with multi-directional triboelectric nanogenerators (TENGs) remains challenges in the field of motion monitoring. To solve this research issue, this study designed a self-powered multifunctional fitness blanket (SF-MFB) which incorporates four TENGs, features multi-sensors and wireless motion monitoring capabilities. It presents a self-powered integrated sensing system which utilizes four TENG sensing units to monitor human motion. Each TENG sensing unit collects the mechanical energy generated during motion. The system is composed of SF-MFB, Bluetooth transmission terminal, and upper computer analysis terminal. Its main purpose is to wirelessly monitor and diagnose human sports skills and enables real-time human-computer interaction. The TENG integrated self-powered sensing system demonstrates practicality in sports skills monitoring, diagnosis, human-computer interaction and entertainment. This research introduces a novel approach for the application of TENG self-powered intelligent integrated sensing system in health promotion.


Assuntos
Desempenho Atlético , Movimento (Física) , Humanos , Esportes
8.
ACS Appl Mater Interfaces ; 15(37): 44294-44304, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695689

RESUMO

Self-sensing soft robotics that mimic the proprioception and exteroception abilities of natural biological systems have shown great potential in challenging applications. However, current add-on strategies that simply combine sensors with actuators by post processing generally suffer from poor compatibility in mechanical properties, interfacing problems, complex manufacturing, and high cost. Herein, we present knitted soft robotics with build-in textile-integrated multimodal sensors, where the knit structure is used not only as a physical actuating layer but also as a sensing functional component. Based on different knit-stitch arrangements, an all-in-one knitted electronic skin with functions of neurons, sensing, and actuation in a single knit-structured fabric layer is constructed. The knitted electronic skin is then integrated into knitted soft robotics, enabling a proprioceptive sense of actuation deformation and an exteroceptive perception of ambient stimuli with minimized interferences for actuation. In addition, the tuck stitches serve as an anisotropic strain-limiting layer to increase the actuating energy efficiency, which resolves the key conflict of softness and volumetric power density in soft actuators. This design strategy provides a convenient, low-cost, and customized method to bring about structural and functional integrability into soft actuators, greatly extending the adaptability of current soft robotics for real-world applications.

9.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499808

RESUMO

The self-adaptive nature of smart textiles to the ambient environment has made them an indispensable part of emerging wearable technologies. However, current advances generally suffer from complex material preparation, uncomfortable fitting feeling, possible toxicity, and high cost in fabrication, which hinder the real-world application of smart materials in textiles. Herein, humidity-response torsional and tensile yarn actuators from twisted and coiled structures are developed using commercially available, cost-effective, and biodegradable viscose fibers based on yarn-spinning and weaving technologies. The twisted yarn shows a reversible torsional stroke of 1400° cm-1 in 5 s when stimulated by water fog with a spraying speed of 0.05 g s-1; the coiled yarn exhibits a peak tensile stroke of 900% upon enhancing the relative humidity. Further, textile manufacturing allows for the scalable fabrication to create fabric artificial muscles with high-dimensional actuation deformations and human-touch comfort, which can boost the potential applications of the humidly adaptive yarns in smart textile and advanced textile materials.

10.
ACS Appl Mater Interfaces ; 14(47): 53274-53284, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36379058

RESUMO

Yarn-based muscle actuators are highly desired for applications in soft robotics, flexible sensors, and other related applications due to their actuation properties. Although the tethering avoiding release of inserted twist, the complex preparation process and harsh experimental conditions make tether-free structures yarn actuator with reliable cycle recovery effectiveness is needed. Herein, a tether-free, multi-hierarchical hybrid construction of a moisture-sensitive responsive yarn-based actuator with the viscose/PET ratio (VPR) = 0.9 exhibited a contraction stroke of 83.15%, a work capacity of 52.98 J·kg-1, and an exerting force of 0.15 MPa. Additionally, the maximum cycle recovery rate of 99% is comparable to that of human skeletal muscles, confirming the advantages of a two-component hybrid structure. The underlying mechanism is discussed based on geometric characterization and energy conversion analysis between the actuation source and the spring frame. The mechanical manufacturing process makes it simple to expand the structurally stable yarn muscles into fabric muscles, opening up new opportunities to advance the usage of yarn-based actuators in smart textiles, medical materials, intelligent plants, and other versatile fields.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36429345

RESUMO

Background: The impact of stress on the nation's physical and mental health is considerable. Exercise is considered to have beneficial effects on mental health and the capacity for coping with stress. The purpose of this study is to verify the effects of fitness dance intervention on female Ph.D. candidates' stress, and compare it with the intervention effects of MBSR. Method: A repeated measurement experimental design was used to evaluate the effects of fitness dance and MBSR on Chinese female Ph.D. candidates' stress. Results: Twelve weeks of fitness dance and MBSR can reduce participants' stress from severe to moderate. Eight weeks of fitness dance can reduce the tension from perceived stress (p = 0.019) and loss of control from perceived stress (p = 0.043). Twelve weeks of fitness dance can reduce the tension from perceived stress (p < 0.000), loss of control from perceived stress (p = 0.002) and perceived stress (p = 0.001). Fitness dance and MBSR affect emotion regulation, thereby affecting stress. Fitness dance reduced participants' stress by improving their cognitive reappraisal ability. MBSR reduced participants' stress by improving their cognitive reappraisal ability and expression suppression ability. Conclusions: Fitness dance, as a method of exercise intervention, is suitable for reducing Chinese female Ph.D. candidates' stress.


Assuntos
Dança , Regulação Emocional , Humanos , Feminino , Dança/fisiologia , Exercício Físico , Saúde Mental
12.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143541

RESUMO

A self-powered triboelectric nanogenerator (SPTENG) based on triboelectric effect and an intelligent interactive system are fabricated for monitoring shooting training and virtual training. The SPTENG is composed of latex and PTFE and an intelligent system. Based on triboelectric effect, the SPTENG can be used to monitor the progress of trigger pressing without a power supply (this is supplied by trigger movements). Because of the flexible properties, it can be attached to a trigger conveniently to monitor the progress of trigger pressing, such as trigger time, trigger stability, etc. Meanwhile, as part of an intelligent shooting system, police can formulate a standard scheme according to signals to improve their skills. Furthermore, they can use it to train between reality and virtuality. Therefore, it has a wide development space in human-computer interaction and real-time information processing.

13.
Healthcare (Basel) ; 10(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35885729

RESUMO

Given that stress leads to more anxiety among female Ph.D. candidates, more attention should be paid to their healthy lifestyle options. Several studies have shown that there is a negative correlation between sports and anxiety. This study took female Chinese Ph.D. candidates' anxiety and sports participation as the research objects. A questionnaire entitled "Investigation on anxiety and sports of Ph.D. candidates" was used to explore the characteristics of anxiety in female Chinese Ph.D. candidates and to investigate the association between anxiety and sports in female Chinese Ph.D. candidates. A total of 588 Ph.D. candidates participated in the questionnaire survey. Some 21 invalid questionnaires were eliminated through the standard deviation of the items of the scale, and 567 valid questionnaires were finally obtained. The questionnaire survey was conducted online from 26 February to 15 March 2022, using the convenience sampling method. The results show that the anxiety level of female Chinese Ph.D. candidates is higher than that of male Ph.D. candidates and that the anxiety level of female Ph.D. candidates in a non-sports discipline is the highest. Weekly sports participation significantly lowers female Ph.D. candidates' anxiety level (p < 0.01). Physical fatigue caused by study and work hinders female Ph.D. candidates from participating in sports (p < 0.05). Some female Chinese Ph.D. candidates in a negative emotional state are unwilling to participate in sports (p < 0.01). Future research should formulate different types of sports intervention programs suitable for alleviating the anxiety of female Ph.D. candidates.

14.
Nanomaterials (Basel) ; 12(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35564285

RESUMO

Wearable motion-monitoring systems have been widely used in recent years. However, the battery energy storage problem of traditional wearable devices limits the development of human sports training applications. In this paper, a self-powered and portable micro-structure triboelectric nanogenerator (MS-TENG) has been made. It consists of micro-structure polydimethylsiloxane (PDMS) film, fluorinated ethylene propylene (FEP) film, and lithium chloride polyacrylamide (LiCl-PAAM) hydrogel. Through the micro-structure, the voltage of the MS-TENG can be improved by 7 times. The MS-TENG provides outstanding sensing properties: maximum output voltage of 74 V, angular sensitivity of 1.016 V/degree, high signal-to-noise ratio, and excellent long-term service stability. We used it to monitor the running skills of speed skaters. It can also store the biomechanical energy which is generated in the process of speed skating through capacitors. It demonstrates capability of sensor to power electronic calculator and electronic watch. In addition, as a flexible electrode hydrogel, it can readily stretch over 1300%, which can help improve the service life and work stability of MS-TENG. Therefore, MS-TENG has great application potential in human sports training monitoring and big data analysis.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35562190

RESUMO

A wearable textile that is engineered to reflect incoming sunlight and allow the transmission of mid-infrared radiation simultaneously would have a great impact on the human body's thermal regulation in an outdoor environment. However, developing such a textile is a tough challenge. Using nanoparticle-doped polymer (zinc oxide and polyethylene) materials and electrospinning technology, we have developed a nanofabric with the desired optical properties and good applicability. The nanofabric offers a cool fibrous structure with outstanding solar reflectivity (91%) and mid-infrared transmissivity (81%). In an outdoor field test under exposure of direct sunlight, the nanofabric was demonstrated to reduce the simulated skin temperature by 9 °C when compared to skin covered by a cotton textile. A heat-transfer model is also established to numerically assess the cooling performance of the nanofabric as a function of various climate factors, including solar intensity, ambient air temperature, atmospheric emission, wind speed, and parasitic heat loss rate. The results indicate that the nanofabric can completely release the human body from unwanted heat stress in most conditions, providing an additional cooling effect as well as demonstrating worldwide feasibility. Even in some extreme conditions, the nanofabric can also reduce the human body's cooling demand compared with traditional cotton textile, proving this material as a feasible solution for better thermoregulation of the human body. The facile fabrication of such textiles paves the way for the mass adoption of energy-free personal cooling technology in daily life, which meets the growing demand for healthcare, climate change, and sustainability.

16.
Healthcare (Basel) ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35206802

RESUMO

The "Healthy China 2030" plan states that it is necessary to formulate and implement physical health intervention plans for special groups, including women. Based on questionnaire data from women in seven Chinese cities, our research analyzed the status quo of women's fitness, its influencing factors, and the differences in and characteristics of different types of women's fitness demands from four aspects: demography, fitness motivation, fitness behavior, and fitness demands, so as to provide a reference for the promotion of women's fitness. A total of 3473 valid samples were completed. The questionnaire included five age groups: there were 146 in the "20-29 years old" group, 829 in the "30-39 years old" group, 1088 in the "40-49 years old" group, 1105 in the "50-59 years old" group and 305 in the "60 years old and above" group. The questionnaire used in this study was a self-made questionnaire. The contents of the questionnaire included age, occupation, educational level, family circumstances, and health status, women's fitness behavior, fitness motivation and fitness demands. The results show that the current situation of urban women's fitness in China is characterized by low frequency and short duration of exercise. The internal factors affecting women's fitness demands include fitness motivation and fitness behavior. The external factors affecting their fitness demands are social environment and family environment. The differences in women's fitness demands mainly come from women's occupation, monthly income, and family stage.

17.
Adv Mater ; 34(2): e2104313, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34757634

RESUMO

A key challenge in textile sensors is to adequately solve the hysteresis for more broad and exacting applications. Unlike the conventional strategy in integrating elastic polymers into the textile, the hysteretic issue is critically addressed here through the structural design of yarns to provide a twisting force. The underlying mechanism is fully discussed based on theory and modeling, which are in good agreement with experimental data. Impressively, the pressure sensor outperforms almost all reported textile-based sensors in terms of recovery index, which refers to the ability to overcome the lagged deformation reflected by the hysteresis (5.3%) and relaxation time (2 ms). Besides, the sensor superiority is also demonstrated by way of its ultrafast response time (2 ms). Thanks to these merits, this pressure sensor is demonstrated to be capable of monitoring epidermal pulses and meanwhile shows great potential to advance the standardization and modernization of pulse palpation in traditional Chinese medicine.


Assuntos
Dispositivos Eletrônicos Vestíveis , DNA , Monitorização Fisiológica , Pressão , Têxteis
18.
ACS Appl Mater Interfaces ; 13(45): 54386-54395, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747178

RESUMO

Fiber-based artificial muscles with excellent actuation performance are gaining great attention as soft materials for flexible actuators; however, current advances in fiber-based artificial muscles generally suffer from high cost, harsh stimulation regimes, limiting deformations, chemical toxicity, or complex manufacturing processing, which hinder the widespread application of those artificial muscles in engineering and practical usage. Herein, a facile cross-scale processing strategy is presented to construct commercially available nontoxic viscose fibers into fast responsive and humidity-driven yarn artificial muscles with a recorded torsional stroke of 1752° cm-1 and a maximum rotation speed up to 2100 rpm, which are comparable to certain artificial muscles made from carbon-based composite materials. The underlying mechanism of such outstanding actuation performance that begins to form at a mesoscale is discussed by theoretical modeling and microstructure characterization. The as-prepared yarn artificial muscles are further scaled up to large-sized fabric muscles through topological weaving structures by integrating different textile technologies. These fabric muscles extend the simple motion of yarn muscles into higher-level diverse deformations without any composite system, complex synthetic processing, and component design, which enables the development of new fiber-based artificial muscles for versatile applications, such as smart textiles and intelligent systems.


Assuntos
Materiais Biomiméticos/química , Músculos/química , Robótica , Têxteis , Materiais Biomiméticos/síntese química , Humanos , Tamanho da Partícula
19.
Adv Mater ; 33(32): e2101005, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219279

RESUMO

Coronary artery disease is the "first killer" in the world, while the classical treatment for this disease is to implant stent. An ideal vascular stent should be nontoxic with self-expanding characteristics, quick expanding speed, and appropriate mechanical supporting property. However, no existing vascular stent covers all properties. Herein, a two-way shape-memory cellulose vascular stent, which can realize shape adjustments by mild solutions such as water and alcohol, is constructed. The shape-memory characteristics, mechanical properties, cell toxicity, and biocompatibility, are systemically investigated by ex vivo experiment as well as molecule simulation and theoretical modeling, revealing that the achieved bilayer two-way shape-memory films (BSMFs) can be used as an artificial vascular stent. In particular, this vascular stent made from BSMFs shows superb biocompatibility according to live/dead cell viability assays. Ex vivo experiments reveal that the novel vascular stent can support arteria coronaria sinistra, or the left main coronary artery, at the opening state while the cross-section of the vessel becomes two times larger than that of the initial state after implantation. Thus, it is believed that effective and scalable BSMFs can make meritorious fundamental contributions to biomaterials science and practical applications such as vascular stents.


Assuntos
Materiais Biocompatíveis/química , Solventes/química , Stents , Animais , Materiais Biocompatíveis/farmacologia , Temperatura Corporal , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Artéria Pulmonar/patologia , Suínos
20.
Skin Res Technol ; 27(4): 494-500, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33404143

RESUMO

BACKGROUND: It is now well understood that, as an uncomfortable sensation evoked by special fabric, prickle derives from the mechanical stimulation of protruding hairiness from fabric surface against the human skin, in which some nociceptors are easy to be triggered by stiff fiber ends. However, up to now, the neural mechanism of the brain for perceiving fabric-evoked prickle is still unclear. MATERIALS AND METHODS: In this work, A type of single-fiber stimulus made from nylon filament was used to repetitively prick the skin of volar forearm at a specific frequency, and the technology of functional magnetic resonance imaging (fMRI) was adopted to detect the brain response synchronously. RESULTS: The results show that repetitive prickling stimulation from the single fiber applied to the volar forearm aroused distributed activation in several brain regions, such as primary somatosensory cortex, secondary somatosensory cortex, motor cortex, bilateral occipital lobe, insular cortex, and ipsilateral limbic lobe. Although the brain activation distribution is similar to pain, the single fiber-evoked prickle sensation possesses unique activation characteristics in several brain regions. CONCLUSION: It is suggested that the sensation evoked by cutaneous prickling stimulation from single fiber belongs to a kind of multidimensional experience involving somatosensory, motor, emotional, cognitive, etc Our study constitutes an important step toward identifying the brain mechanism of fabric-evoked prickle.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Nociceptores , Estimulação Física , Córtex Somatossensorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...