Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974738

RESUMO

Considering the difficulty of pulse repetition frequency (PRF) design in multi-angle SAR when using ultra-high speed platforms, a multi-angle SAR imaging system in a unified coordinate system is proposed. The digital multi-beamforming is used in the system and multi-angle SAR data can be obtained in one flight. Therefore, the system improves the efficiency of data recording. An improved range migration algorithm (RMA) is used for data processing, and imaging is made in a unified imaging coordinate system. The resolution of different view images is the same, and there is a fixed delay between the images. On this basis, the SAR image fusion is performed after image matching. The results of simulation and measured data confirm the effectiveness of the system and the method.

2.
Sensors (Basel) ; 18(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227636

RESUMO

Multichannel SAR is an effective approach to solving the contradiction between high azimuth resolution and wide swath. The goal of this paper is to obtain a new and effective method for estimating and compensating the interchannel phase error of the Chinese GF-3 Synthetic aperture radar (SAR). A channel phase error correction method based on the optimal value of the image domain quality function is proposed. In this method, the phase error is initially compensated using the correlation function method. In the fine correction of dual-channel phase error, a heuristic search algorithm is used to estimate the residual phase by searching the extremum of the quality function. After phase compensation in the image domain, the azimuth ambiguities caused by the remaining phase are eliminated. The proposed image domain processing method provides a new idea for channel phase error correction. The measured data of high-resolution GF-3 dual-channel ultrafine imaging mode verifies the validity of this method.

3.
Sensors (Basel) ; 18(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081595

RESUMO

Conventional synthetic aperture radar (SAR) imaging algorithms usually require a period of time to process data that is longer than the time it takes to record one synthetic aperture or that corresponding to an adequate azimuth resolution. That is to say, the real-time processing system is idle during the long data recording time and the utilization of computational resources is low. To deal with this problem, a real-time imaging algorithm based on sub-aperture chirp scaling dechirp (CS-dechirp) is proposed in this paper. With CS-dechirp, the sub-aperture data could be processed to form an image with relatively low resolution. Subsequently, a few low-resolution images are generated as longer azimuth data are recorded. At the stage of full-resolution image generation, a coherent combination method for the low-resolution complex-value images is developed. As the low-resolution complex-value images are coherently combined one by one, the resolution is gradually improved and the full-resolution image is finally obtained. The results of a simulation and real data from the GF3-SAR validate the effectiveness of the proposed algorithm.

4.
Sensors (Basel) ; 18(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021954

RESUMO

In recent years, terahertz imaging systems and techniques have been developed and have gradually become a leading frontier field. With the advantages of low radiation and clothing-penetrable, terahertz imaging technology has been widely used for the detection of concealed weapons or other contraband carried on personnel at airports and other secure locations. This paper aims to detect these concealed items with deep learning method for its well detection performance and real-time detection speed. Based on the analysis of the characteristics of terahertz images, an effective detection system is proposed in this paper. First, a lots of terahertz images are collected and labeled as the standard data format. Secondly, this paper establishes the terahertz classification dataset and proposes a classification method based on transfer learning. Then considering the special distribution of terahertz image, an improved faster region-based convolutional neural network (Faster R-CNN) method based on threshold segmentation is proposed for detecting human body and other objects independently. Finally, experimental results demonstrate the effectiveness and efficiency of the proposed method for terahertz image detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...