Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11407, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762538

RESUMO

The rapid development of ultrawideband (UWB) communication systems has resulted in increasing performance requirements for the antenna system. In addition to a wide bandwidth, fast propagation rates and compact dimensions, flexibility, wearability or portability are also desirable for UWB antennas, as are excellent notch characteristics. Although progress has been made in the development of flexible/wearable antennas desired notch properties are still rather limited. Moreover, most presently available flexible UWB antennas are fabricated using environmentally not attractive subtractive etching-based processes. The usage of facile additive sustainably inkjet printing processes also utilizing low temperature plasma-activated conductive inks is rarely reported. In addition, the currently used tri-notched flexible UWB antenna designs have a relatively large footprint, which poses difficulties when integrated into miniaturized and compact communication devices. In this work, a silver nano ink is used to fabricate the antenna via inkjet printing and an efficient plasma sintering procedure. For the targeted UWB applications miniaturized tri-notched flexible antenna is realized on a flexible polyethylene terephthalate (PET) substrate with a compact size of 17.6 mm × 16 mm × 0.12 mm. The antenna operates in the UWB frequency band (2.9-10.61 GHz), and can shield interferences from WiMAX (3.3-3.6 GHz), WLAN (5.150-5.825 GHz) and X-uplink (7.9-8.4 GHz) bands, as well as exhibits a certain of bendability. Three nested "C" slots of different sizes were adopted to achieve notch features. The simulation and test results demonstrate that the proposed antenna can generate signal radiation in the desired UWB frequency band while retaining the desired notch properties and having acceptable SAR values on-body, making it a viable candidate for usage in flexible or wearable communication transmission devices. The research provides a facile and highly efficient method for fabricating flexible/wearable UWB antennas, that is, the effective combination of inkjet printing processing, flexible substrates, low temperature-activated conductive ink and antenna structure design.

2.
Front Genet ; 15: 1377238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586584

RESUMO

The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.

3.
Cancer Lett ; 587: 216723, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342234

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Prognóstico
4.
Food Funct ; 13(9): 5455-5465, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35475458

RESUMO

Although Corni Fructus (CF) is a fruit with great economic value and development potential in medicine and food, too much reliance on personal experience for quality evaluation seriously limits the trading and circulation of CF. In the present study, through the research on the correlation between the chemical composition and the appearance color, a standard colorimetric card related to CF quality was established, which simplified the quality evaluation process and improved the accuracy of the visual evaluation of CF. Firstly, a total of 29 batches of CF from different places were collected. Then, "imread" in the MATLAB software was used to convert the color of all samples into RGB values, and HPLC-DVD was used to measure the content of the main chemical components in CF. Thereafter, the correlation between the content and color was studied by using MLR, BP-ANNs and SVM chemometric tools to screen the Q-marker of CF, which was further confirmed by in vivo and in vitro experiments. Finally, the Q-marker standard colorimetric card with the best fitting degree is established according to the prediction model. Thus, this study provides an auxiliary reference for the color evaluation of CF and a reference for the standardization and quantification of the macro characteristics of traditional Chinese medicine and food.


Assuntos
Cornus , Medicamentos de Ervas Chinesas , Quimiometria , Cromatografia Líquida de Alta Pressão , Cornus/química , Medicamentos de Ervas Chinesas/química , Frutas/química , Medicina Tradicional Chinesa
5.
Food Funct ; 12(20): 9808-9819, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664576

RESUMO

Corni Fructus (CF) is a traditional medicine and beneficial food with multifaceted protective effects against diabetes and its complications. Since alpha-glucosidase inhibitors (GIs) are promising first-choice oral antihyperglycemic drugs for diabetes, we examined whether GIs from CF (GICF) are useful for diabetes treatment. Therefore, GICF was extracted by ultrasound-assisted enzymatic extraction (UAEE) that is optimized by a three-level, four-factor Box-Behnken design and determined by ultra-performance liquid chromatography. Compared to 36.31 mg g-1 without enzyme treatment, the GICF yield increased to 70.44 mg g-1via UAEE under optimum conditions (0.5% compound enzyme extracted in 23 min at 46 °C and pH 4.8). The activity (91.99%) of GICF was as predicted (93.28%). When GICF was used in an insulin-resistant HepG2 cell model, it significantly ameliorated the glucose metabolism in a dose-dependent manner. Our findings indicate that UAEE may be an innovative method for functional food extraction and a potential strategy for high-quality food ingredient (such as GI) production with high efficiency and productivity.


Assuntos
Cornus/química , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Resistência à Insulina , Celulase/isolamento & purificação , Cromatografia Líquida/métodos , Diabetes Mellitus/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Poligalacturonase/isolamento & purificação , Ultrassonografia/métodos
6.
Foods ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809821

RESUMO

Saponins have been extensively used in the food and pharmaceutical industries because of their potent bioactive and pharmacological functions including hypolipidemic, anti-inflammatory, expectorant, antiulcer and androgenic properties. A lot of saponins-containing foods are recommended as nutritional supplements for diabetic patients. As a medicine and food homologous material, Corni Fructus (CF) contains various active ingredients and has the effect of treating diabetes. However, whether and how CF saponins attenuate diabetes is still largely unknown. Here, we isolated total saponins from CF (TSCF) using ultrasonic microwave-assisted extraction combined with response surface methodology. The extract was further purified by a nonpolar copolymer styrene type macroporous resin (HPD-300), with the yield of TSCF elevated to 13.96 mg/g compared to 10.87 mg/g obtained via unassisted extraction. When used to treat high-fat diet and streptozotocin-induced diabetic mice, TSCF significantly improved the glucose and lipid metabolisms of T2DM mice. Additionally, TSCF clearly ameliorated inflammation and oxidative stress as well as pancreas and liver damages in the diabetic mice. Mechanistically, TSCF potently regulated insulin receptor (INSR)-, glucose transporter 4 (GLUT4)-, phosphatidylinositol 3-kinase (PI3K)-, and protein kinase B (PKB/AKT)-associated signaling pathways. Thus, our data collectively demonstrated that TSCF could be a promising functional food ingredient for diabetes improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...