Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(8): 5283-5294, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837254

RESUMO

BACKGROUND: Golden angle (GA) radial trajectory is advantageous for dynamic magnetic resonance imaging (MRI). Recently, several advanced algorithms have been developed based on navigator-interleaved GA trajectory to realize free-running cardiac MRI. However, navigator-interleaved GA trajectory suffers from the eddy-current effect, which reduces the image quality. PURPOSE: This work aims to integrate the navigator-interleaved GA trajectory with clinical cardiac MRI acquisition, with the minimum eddy-current artifacts. The ultimate goal is to realize a high-quality free-running cardiac imaging technique. METHODS: In this paper, we propose a new "swing golden angle" (swingGA) radial profile order. SwingGA samples the k-space by rotating back and forth at the generalized golden ratio interval, with smoothly interleaved navigator readouts. The sampling efficiency and angle increment distributions were investigated by numerical simulations. Static phantom imaging experiments were conducted to evaluate the eddy current effect, compared with cartesian, golden angle radial (GA), and tiny golden angle (tGA) trajectories. Furthermore, 12 heart-healthy subjects (aged 21-25 years) were recruited for free-running cardiac imaging with different sampling trajectories. Dynamic images were reconstructed by a low-rank subspace-constrained algorithm. The image quality was evaluated by signal-to-noise-ratio and spectrum analysis in the heart region, and compared with traditional clinical cardiac MRI images. RESULTS: SwingGA pattern achieves the highest sampling efficiency (mSE > 0.925) and the minimum azimuthal angle increment (mAD < 1.05). SwingGA can effectively suppress eddy currents in static phantom images, with the lowest normalized root mean square error (nRMSE) values among radial trajectories. For the in-vivo cardiac images, swingGA enjoys the highest SNR both in the blood pool and myocardium, and contains the minimum level of high-frequency artifacts. The free-running cardiac images have good consistency with traditional clinical cardiac MRI, and the swingGA sampling pattern achieves the best image quality among all sampling patterns. CONCLUSIONS: The proposed swingGA sampling pattern can effectively improve the sampling efficiency and reduce the eddy currents for the navigator-interleaved GA sequence. SwingGA is a promising sampling pattern for free-running cardiac MRI.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Humanos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Artefatos , Adulto Jovem , Algoritmos , Razão Sinal-Ruído
2.
Artigo em Inglês | MEDLINE | ID: mdl-37847619

RESUMO

Chemical Exchange Saturation Transfer Magn-etic Resonance Imaging (CEST-MRI) is a promising approach for detecting tissue metabolic changes. However, due to the constraints of scan time and contrast-noise-ratio, CEST-MRI always exhibits low spatial resolution, hindering the clinical applications especially for detection of small lesions. Many super-resolution (SR) methods have shown good performance in medical images. However, when applied to CEST-MRI, these methods have two shortcomings that may limit their performance. Firstly, CEST-MRI has an additional frequency dimension, but the information along this dimension is not fully utilized. The second is that these SR methods mainly focus on improving the quality of the CEST-weighted images, while the accuracy of the quantitative maps is the most concerned aspect for CEST-MRI. To address these shortcomings, we propose a Cross-space Optimization-based Mutual learning nETwork (COMET) for SR of CEST-MRI. COMET incorporates novel spatio-frequency extraction modules and a mutual learning module to leverage and combine information from both spatial and frequency spaces, thereby enhancing the SR performance. Furthermore, we propose a novel CEST-based normalization loss to address the normalization-induced distribution problem and preserve the sharpness of quantitative maps, enabling more accurate CEST-MRI quantification. COMET is evaluated on an ischemia rat brain dataset and a human brain dataset. The results demonstrate COMET achieves 8-fold SR, providing accurate quantitative maps. Moreover, COMET outperforms all other state-of-the-art SR methods. Additionally, COMET exhibits its potential in prospective study.

3.
Med Sci Monit ; 28: e934255, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35042840

RESUMO

Reperfusion therapy is the optimal therapy for acute myocardial infarction (AMI), but acute inflammatory injury and chronic heart failure (HF) after myocardial ischemia and reperfusion (MI/R) remain the leading cause of death after AMI. Pyroptosis, a newly discovered form of cell death, has been proven to play a significant role in the acute reperfusion process and the subsequent chronic process of ventricular remodeling. Current research shows that multiple stimuli activate the pyroptotic signaling pathway and contribute to cell death and nonbacterial inflammation after MI/R. These stimuli promote the assembly of the nucleotide-binding and oligomerization-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by activating NLRP3. The mature NLRP3 inflammasome cleaves procaspase-1 to active caspase-1, which leads to mature processing of interleukin (IL)-18, IL-1ß, and gasdermin D (GSDMD) protein. That eventually results in cell lysis and generation of nonbacterial inflammation. The present review summarizes the mechanism of NLRP3 inflammasome activation after MI/R and discusses the role that NLRP3-mediated pyroptosis plays in the pathophysiology of MI/R injury and ventricular remodeling. We also discuss potential mechanisms and targeted therapy for which there is evidence supporting treatment of ischemic heart disease.


Assuntos
Inflamação/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Remodelação Ventricular/genética , Humanos , Inflamassomos , Inflamação/genética , Traumatismo por Reperfusão Miocárdica/genética , Transdução de Sinais/genética
4.
PLoS One ; 15(2): e0228814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053641

RESUMO

The harmful cyanobacteria blooms which usually form in spring and summer, cause global eutrophication of freshwater and coastal marine ecosystems. This study tried to utilize cyanobacteria as a raw material to produce biological poly(vinyl)alcohol-based films. Cyanobacteria was firstly modified with poly(ethylene glycol), guanidine hydrochloride, carboxymethyl cellulose and 3-glycidoxypropyltrimethoxysilane as plasticizer, modifier, toughening agent and coupling agent, respectively. And then the modified cyanobacteria was introduced to poly(vinyl)alcohol and cellulose nanofibers/poly(vinyl)alcohol matrix to improve the barrier properties of poly(vinyl)alcohol to light and water. Compared with poly(vinyl)alcohol and cellulose nanofibers/poly(vinyl)alcohol films, the obtained cyanobacteria/poly(vinyl)alcohol and the cyanobacteria/cellulose nanofibers/poly(vinyl)alcohol composites exhibit better resistance to light and water. More interestingly, we found that after adding cyanobacteria, the poly(vinyl)alcohol-based films present better barrier properties to blue-violet light and red light. In adddition, introducing cyanobacteria into poly(vinyl)alcohol or cellulose nanofibers/poly(vinyl)alcohol matrix increases the surface roughness and contact angle to water of the composites.


Assuntos
Materiais Biomiméticos/química , Cianobactérias/química , Luz , Álcool de Polivinil/química , Água/química , Materiais Biomiméticos/efeitos da radiação , Celulose/química , Guanidina/química , Teste de Materiais , Nanofibras/química , Oxigênio/química , Plastificantes/química , Propriedades de Superfície , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA