Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Front Vet Sci ; 11: 1364287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751803

RESUMO

An artificial semisynthetic material can be derived from artemisinin (ART) called dihydroartemisinin (DHA). Although DHA has enhanced antigiardial potential, its clinical application is limited because of its poor selectivity and low solubility. The drug's absorption has a direct impact on the cell, and mechanism research is limited to its destruction of the cytoskeleton. In this study, we used the zeolitic imidazolate framework-8 and loaded it with DHA (DHA@Zif-8) to improve its antigiardial potential. DHA@Zif-8 can enhance cellular uptake, increase antigiardial proliferation and encystation, and expand the endoplasmic reticulum compared with the DHA-treated group. We used RNA sequencing (RNA-seq) to investigate the antigiardial mechanism. We found that 126 genes were downregulated and 123 genes were upregulated. According to the KEGG and GO pathway analysis, the metabolic functions in G. lamblia are affected by DHA@Zif-8 NPs. We used real-time quantitative reverse transcription polymerase chain reaction to verify our results using the RNA-seq data. DHA@Zif-8 NPs significantly enhanced the eradication of the parasite from the stool in vivo. In addition, the intestinal mucosal injury caused by G. lamblia trophozoites markedly improved in the intestine. This research provided the potential of utilizing DHA@Zif-8 to develop an antiprotozoan drug for clinical applications.

2.
Chem Commun (Camb) ; 60(39): 5104-5135, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38625567

RESUMO

Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.

3.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674963

RESUMO

Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.

4.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625481

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Assuntos
Células Acinares , Modelos Animais de Doenças , Inflamassomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Células Acinares/metabolismo , Células Acinares/patologia , Inflamassomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pancreatite/metabolismo , Pancreatite/terapia , Pancreatite/patologia , Humanos , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Placenta/metabolismo , Gravidez , Masculino , Camundongos Endogâmicos C57BL
5.
Small Methods ; : e2400081, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686691

RESUMO

High energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.

6.
RSC Adv ; 14(17): 11900-11907, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623285

RESUMO

Transition metal oxides based anodes are facing crucial problems of capacity fading at long cycles and high rates due to electrode degradations. In this prospective, an effective strategy is employed to develop advanced electrode materials for lithium-ion batteries (LIBs). In the present work, a mesoporous Co3O4@CdS hybrid sructure is developed and investigated as anode for LiBs. The hybrid structure owning porous nature and large specific surface area, provides an opportunity to boost the lithium storage capabilities of Co3O4 nanorods. The Co3O4@CdS electrode delivers an initial discharge capacity of 1292 mA h g-1 at 0.1C and a very stable reversible capacity of 760 mA h g-1 over 200 cycles with a capacity retention rate of 92.7%. In addition, the electrode exhibits excellent cyclic stability even after 800 cycles and good rate performance as compared to previously reported electrodes. Moreover, density functional theory (DFT) and electrochemical impedance spectroscopy (EIS) confirm the enhanced kinetics of the Co3O4@CdS electrode. The efficient performance of the electrode may be due to the increased surface reactivity, abundant active sites/interfaces for rapid Li+ ion diffusion and the synergy between Co3O4 and CdS NPs. This work demonstrates that Co3O4@CdS hybrid structures have great potential for high performance batteries.

7.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38461552

RESUMO

Bi-functional materials provide an opportunity for the development of high-performance devices. Up till now, bi-functional performance of NiCo2O4@SnS2nanosheets is rarely investigated. In this work, NiCo2O4@SnS2nanosheets were synthesized on carbon cloth by utilizing a simple hydrothermal technique. The developed electrode (NiCo2O4@SnS2/CC) was investigated for the detection of L-Cysteine and supercapacitors applications. As a non-enzymatic sensor, the electrode proved to be highly sensitive for the detection of L-cysteine. The electrode exhibits a reproducible sensitivity of 4645.82µA mM-1cm-2in a wide linear range from 0.5 to 5 mM with a low limit of detection (0.005µM). Moreover, the electrode shows an excellent selectivity and long-time stability. The high specific surface area, enhanced kinetics, good synergy and distinct architecture of NiCo2O4@SnS2nanosheets produce a large number of active sites with substantial energy storage potential. As a supercapacitor, the electrode exhibits improve capacitance of 655.7 F g-1at a current density of 2 A g-1as compare to NiCo2O4/CC (560 F g-1). Moreover, the electrode achieves 95.3% of its preliminary capacitance after 10 000 cycles at 2 A g-1. Our results show that NiCo2O4@SnS2/CC nanosheets possess binary features could be attractive electrode material for the development of non-enzymatic biosensors as well as supercapacitors.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38526893

RESUMO

View-based methods have demonstrated promising performance in 3D shape understanding. However, they tend to make strong assumptions about the relations between views or learn the multi-view correlations indirectly, which limits the flexibility of exploring inter-view correlations and the effectiveness of target tasks. To overcome the above problems, this paper investigates flexible organization and explicit correlation learning for multiple views. In particular, we propose to incorporate different views of a 3D shape into a permutation-invariant set, referred to as View Set, which removes rigid relation assumptions and facilitates adequate information exchange and fusion among views. Based on that, we devise a nimble Transformer model, named VSFormer, to explicitly capture pairwise and higher-order correlations of all elements in the set. Meanwhile, we theoretically reveal a natural correspondence between the Cartesian product of a view set and the correlation matrix in the attention mechanism, which supports our model design. Comprehensive experiments suggest that VSFormer has better flexibility, efficient inference efficiency and superior performance. Notably, VSFormer reaches state-of-the-art results on various 3d recognition datasets, including ModelNet40, ScanObjectNN and RGBD. It also establishes new records on the SHREC'17 retrieval benchmark. The code and datasets are available at https://github.com/auniquesun/VSFormer.

9.
Environ Sci Pollut Res Int ; 31(18): 27037-27051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502266

RESUMO

Graphene-based material is widely used to remove arsenic from water due to its layered structure with high surface area. Here, we have successfully synthesized Fe-La bimetallic modified graphite sheet materials to more efficiently remove As(III) from aqueous solution. The results showed that Fe-La-graphite sheets (FL-graphite sheets) have a larger specific surface area (194.28 m2·g-1) than graphite sheets (2.80 m2·g-1). The adsorption capacity of FL-graphite sheets for As(III) was 51.69 mg·g-1, which was higher than that of graphite sheets (21.91 mg·g-1), La-graphite sheets (26.06 mg·g-1), and Fe-graphite sheets (40.26 mg·g-1). The FL-graphite sheets conformed to the Freundlich and Dubinin-Radushkevich isotherm, and the maximum adsorption capacity was 53.62 mg·g-1. The removal process obeys intra-particle diffusion and pore diffusion for As(III). The results of batch adsorption experiments and characterization analyses demonstrated that oxidation, ligand exchange, and inner sphere complexation mechanisms involved in the adsorption of FL-graphite sheets to As(III) in comparison with graphite sheets. In addition, electrostatic attraction mechanism was found vital in the adsorption. Ecotoxicity assessment revealed that FL-graphite sheets have little influence on rice germination and growth, but reduced the toxicity of As(III) to rice. Therefore, the FL-graphite sheets have good practical application value in purifying As(III) polluted water with litter ecotoxicity.


Assuntos
Arsênio , Grafite , Ferro , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ferro/química , Adsorção , Purificação da Água/métodos
10.
Geriatr Nurs ; 56: 312-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422626

RESUMO

The purpose of this study was to identify latent classes of chronic pain in older adults based on perceptual, cognitive, behavioral, emotional and social factors, and to explore the associations between each class of chronic pain and different cognitive domains. A total of 629 participants were included. Three classes of chronic pain were identified: "episodic recurrent mild pain with good psychosocial state" (class 1), "episodic recurrent moderate pain with general psychosocial state" (class 2) and "continuous multilocational severe pain with attacks accompanied by poor psychosocial state and avoidance of activity" (class 3). After adjusting for relevant confounders, chronic pain presenting as class 1 was associated with worse memory; class 2 was associated with worse global cognitive function, memory, information processing speed, and executive function; and class 3 was additionally associated with worse attention compared to class 2. The findings contribute to the development of targeted programs for treating pain and improving cognitive functioning.


Assuntos
Dor Crônica , Disfunção Cognitiva , Humanos , Idoso , Dor Crônica/psicologia , Estudos Transversais , Análise de Classes Latentes , Cognição , Função Executiva
11.
J Affect Disord ; 352: 410-418, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367710

RESUMO

BACKGROUND: Cognitive frailty (CF) is an important geriatric syndrome and is reversible. It is crucial to develop preventive interventions for CF. We aimed to explore the associations between CF and its associated factors in Chinese aged 45 years and above. METHODS: Based on the available data of 3 waves in China Health and Retirement Longitudinal Study from 2011 to 2015, 16,071 individuals aged 45 years and above from 3 waves were included. Based on the health ecology model, the associated factors were classified as downstream, midstream and upstream factors. Generalized hierarchical linear model including time level, individual level, and province level was applied to analyze the associations between factors and CF. RESULTS: Multilevel factors have different effects on physical and cognitive function. In the downstream, old age, female, underweight, chronic diseases, and depression were risk factors of reversible CF and potentially reversible CF, and overweight was their protective factor. In the midstream, short or long night sleep duration was their risk factor, and > 30 and ≤ 60 min afternoon naps, alcohol drinking, and participation in social activities were their protective factors. In the upstream, living in rural areas was their risk factor, and high educational level, household consumption and GDP per capita were their protective factors. CONCLUSIONS: Physical function and cognitive function are affected differently by multiple factors. The occurrence and development of physical frailty and cognitive impairment may have some common mechanisms. CF can be influenced by multilevel factors, and multilevel and comprehensive management of CF should be achieved. KEY POINTS: Cognitive frailty was correlated with multilevel factors, including downstream, midstream, and upstream factors. It is crucial to focus on individual interventions such as physiological factors, psychological factors and health behaviors, especially the elderly, women and those with depression. Socioeconomic status was associated with the lower prevalence of cognitive frailty.


Assuntos
Disfunção Cognitiva , Fragilidade , Pessoa de Meia-Idade , Idoso , Humanos , Feminino , Fragilidade/epidemiologia , Idoso Fragilizado , Estudos Longitudinais , Disfunção Cognitiva/epidemiologia , Cognição , Avaliação Geriátrica
12.
Adv Mater ; 36(21): e2313378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340031

RESUMO

Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.

13.
Eur J Nutr ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300291

RESUMO

PURPOSE: Vitamins and polyunsaturated fatty acids (PUFAs) have been studied extensively as safe and manageable nutrient interventions for mild cognitive impairment (MCI). The purpose of the current meta-analysis was to examine the effects of vitamins and PUFAs on cognition and to compare the effects of single and multiple nutrient subgroups in patients with MCI. METHODS: Randomized controlled trials (RCTs) written in English and Chinese were retrieved from eight databases, namely, PubMed, CENTRAL, Embase, CINAHL, Web of Science, SinoMed, CNKI, and Wanfang Data, from their respective dates of inception until 16 July 2023. The quality of the included studies was assessed using the Cochrane Risk of Bias Tool 2.0. Meta-analyses were performed to determine the standardized mean differences (SMDs) in global cognitive function, memory function, attention, visuospatial skills, executive function, and processing speed between the supplement and control groups using 95% confidence intervals (CI) and I2. Prospero registration number: CRD42021292360. RESULTS: Sixteen RCTs that studied different types of vitamins and PUFAs were included. The meta-analysis revealed that vitamins affected global cognitive function (SMD = 0.58, 95% CI = [0.20, 0.96], P = 0.003), memory function (SMD = 2.55, 95% CI = [1.01, 4.09], P = 0.001), and attention (SMD = 3.14, 95% CI = [1.00, 5.28], P = 0.004) in patients with MCI, and PUFAs showed effects on memory function (SMD = 0.65, 95% CI = [0.32, 0.99], P < 0.001) and attention (SMD = 2.98, 95% CI = [2.11, 3.84], P < 0.001). Single vitamin B (folic acid [FA]: SMD = 1.21, 95% CI = [0.87, 1.55]) supplementation may be more effective than multiple nutrients (FA and vitamin B12: SMD = 0.71, 95% CI = [0.41, 1.01]; and FA combined with docosahexaenoic acid [DHA]: SMD = 0.58, 95% CI = [0.34, 0.83]) in global cognitive function. CONCLUSIONS: FA, vitamin B6, vitamin B12, and vitamin D may improve global cognitive function, memory function, and attention in patients with MCI. Eicosapentaenoic acid (EPA) and DHA may improve memory function and attention. We also noted that FA may exert a greater effect than a vitamin B combination (FA and vitamin B12) or the combination of FA and DHA. However, because of the low evidence-based intensity, further trials are necessary to confirm these findings.

14.
Waste Manag Res ; : 734242X241231394, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390711

RESUMO

Cadmium (Cd)-enriched adsorbents wastes possess great environmental risk due to their large-scale accumulation and toxicity in the natural environment. Recycling spent Cd-enriched adsorbents into efficient catalysts for advanced applications could address the environmental issues and attain the carbon neutral goal. Herein, a facile strategy is developed for the first time to reutilize the alkali lignin (AL)-derived biochar (ALB) absorbed with Cd into cadmium sulphide (CdS)/C composite for the efficient methylene blue (MB) removal. The ALB is initially treated with Cd-containing solution, then the recycling ALB samples with adsorbed Cd are converted to the final CdS/C composite using NaS2 as the sulphurizing reagent for vulcanization reaction. The optimal ALB400 demonstrates a high adsorption capacity of 576.0 mg g-1 for Cd removal. Then the converted CdS/C composite shows an efficient MB removal efficiency of 94%. The photodegradation mechanism is mainly attributed to carbon components in the CdS/C composite as electron acceptor promoting the separation of photoelectrons/holes and slowing down the abrasion of CdS particles. The enhanced charge transfer and contact between the carrier and the active site thus improves the removal performance and reusability. This work not only develops a method for removing Cd from wastewater effectively and achieving the waste resource utilization but also further offers a significant guidance to use other kinds of spent heavy metal removal adsorbents for the construction of low-cost and high value-added functional materials.

15.
Small ; : e2310786, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317521

RESUMO

High-entropy materials have attracted much attention in the electrocatalysis field due to their unique structure, high chemical activity, and compositional tunability. However, the harsh and complex synthetic methods limit the application of such materials. Herein, a universal non-equilibrium liquid-phase synthesis strategy is reported to prepare high-entropy amorphous oxide nanoparticles (HEAO-NPs), and the composition of HEAO-NPs can be precisely controlled from tri- to ten-component. The non-equilibrium synthesis environment provided by an excessively strong reducing agent overcomes the difference in the reduction potentials of various metal ions, resulting in the formation of HEAO-NPs with a nearly equimolar ratio. The oxygen evolution reaction (OER) performance of HEAO-NPs is further improved by adjusting the composition and optimizing the electronic structure. The Fe16 Co32 Ni32 Mn10 Cu10 BOy exhibits a smaller overpotential (only 259 mV at 10 mA cm-2 ) and higher stability in OER compared with commercial RuO2 . The amorphous high-entropy structure with an optimized concentration of iron makes the binding energy of CoNi shift to a higher direction, promotes the generation of high-valence active intermediates, and accelerates the OER kinetic process. The HEAO-NPs have promising application potential in the field of catalysis, biology, and energy storage, and this work provides a general synthesis method for composition-controllable high-entropy materials.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38324660

RESUMO

OBJECTIVE: To systematically review the current status and influencing factors of psychological resilience in stroke patients and to provide a theoretical basis for future personalized rehabilitation support and psychological interventions. METHOD: This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. A comprehensive search of databases including PubMed, Web of Science, Medline, PsycINFO, CINAHL, Cochrane Library, CNKI, VIP, CMB, and WANGFANG was conducted from inception until November 22, 2023, resulting in the retrieval of 2099 studies. Literature screening and data extraction were performed by two independent evaluators based on pre-defined inclusion and exclusion criteria, and meta-analysis was performed using Review Manager 5.4 software. RESULTS: The final review included 23 studies. The results showed that self-efficacy, hope, confrontation coping, avoidance coping, functional independence, quality of life, and social support were positively associated with psychological resilience. Conversely, anxiety, depression, and resignation coping were negatively associated with psychological resilience. CONCLUSIONS: Patients with stroke have a low level of psychological resilience, which was influenced by a variety of factors. However, longitudinal and large sample studies are needed to further confirm these findings. These results should be integrated into clinical practice for early assessment and targeted intervention in psychological resilience to assist patients in coping with the rehabilitation process and life changes after a stroke.

17.
Acta Pharm Sin B ; 14(1): 392-404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261815

RESUMO

Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity. However, no reliable method is currently available to assess its impact on delivery performance. In this study, a biomimetic nasal model based on three-dimensional (3D) reconstruction and three-dimensional printing (3DP) technology was developed for visualizing the deposition of drug powders in the nasal cavity. The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females. The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test. The experimental device produced the most satisfactory results with five spray times. Furthermore, particle sizes and spray angles were found to significantly affect the experimental device's performance and alter drug distribution, respectively. Additionally, mometasone furoate (MF) nasal spray (NS) distribution patterns were investigated in a goat nasal cavity model and three male goat noses, confirming the in vitro and in vivo correlation. In conclusion, the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.

18.
Dalton Trans ; 53(7): 3348-3355, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38263862

RESUMO

Titanium dioxide (TiO2) anodes show significant advantages in ion storage owing to their low cost, abundant sources, and small volume change during cycling. However, their intrinsic low electronic conductivity and sluggish ion diffusion coefficient restrict the application of TiO2 anodes, especially at high current densities. The construction of a covalently-bonded interface in TiO2-based composite anodes is an effective approach to solve these issues. Covalent bonds are usually formed in situ during materials synthesis processes, such as high-energy ball milling, solvothermal reactions, plasma-assisted thermal treatment, and addition of a linking agent for covalent coupling. In this study, we demonstrate that a spontaneous redox reaction between defective TiO2 powder and an oxidative graphene oxide (GO) substate can be used to form interfacial covalent bonds in composites. Different structural characterization techniques confirmed the formation of interfacial covalent bonds. Electrochemical measurements on an optimized sample showed that a specific capacity of 281.3 mA h g-1 after 200 cycles can be achieved at a current density of 1 C (1 C = 168 mA g-1). Even at a high rate of 50 C, the electrode maintained a reversible capacity of 97.0 mA h g-1. The good lithium storage performance of the electrode is a result of the uniquely designed composite electrodes with strong interfacial chemical bonds.

19.
Water Res ; 251: 121111, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211412

RESUMO

Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Águas Residuárias , Poluentes Ambientais/análise , Ecossistema , Água/análise , Poluentes Químicos da Água/análise
20.
Environ Sci Pollut Res Int ; 31(3): 3560-3571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085479

RESUMO

The objective of this study was to evaluate the worldwide burden of leukemia owing to occupational exposure to formaldehyde (OEF) from 1990 to 2019. Data on leukemia due to OEF were obtained from the Global Burden of Disease Study (GBD) 2019. By region, age, sex, and disease subtype, the numbers and age-standardized rates (ASRs) associated with deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs) were analyzed. Annual average percentage change (AAPC) was used to estimate disease burden trends from 1990 to 2019. To measure the risk of leukemia due to OEF, the population attributable fraction (PAF) was introduced. From 1990 to 2019, the number of deaths, DALYs, YLLs, and YLDs for leukemia caused by OEF increased by 44%, 34%, 33%, and 124%, respectively. Regarding the change in ASRs, the age-standardized YLDs (ASYLDs) rate of leukemia due to OEF, which was 38.03% (AAPC = 1.17 [95% confidence interval [CI] 1.11, 1.23]), indicated an increased trend. But the age-standardized mortality rate (ASMR), age-standardized DALY (ASDALY) rate, and age-standardized YLL (ASYLL) rate showed decline trends, with - 11.90% (AAPC = - 0.41 [95% CI - 0.45, - 0.37]), - 14.19% (AAPC = - 0.5 [95% CI - 0.55, - 0.45]), and - 14.97% (AAPC = - 0.53 [95% CI - 0.58, - 0.48]), respectively. In terms of PAFs, there were increasing trends in PAFs of age-standardized deaths, ASDALYs, ASYLLs, and ASYLDs for leukemia caused by OEF, with 20.15% (95% uncertainty interval [UI] 11.76%, 30.25%), 36.28% (95% UI 21.46%, 53.42%), 51.91% (95% UI 35.05%, 72.07%), and 36.34% (95% UI 21.58%, 53.63%), respectively. Across the socio-demographic index (SDI) regions, the leukemia burden caused by OEF was concentrated in middle and high-middle SDI regions. Besides, OEF poses a more serious risk for acute leukemia among the leukemia subtype. Globally, leukemia caused by OEF remains a public health burden. Policies must be developed to avoid the burden of leukemia caused by OEF.


Assuntos
Leucemia , Exposição Ocupacional , Humanos , Expectativa de Vida , Anos de Vida Ajustados por Qualidade de Vida , Carga Global da Doença , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Saúde Global
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...