Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(6): 5471-5500, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499384

RESUMO

BACKGROUND: Parthanatos is a novel programmatic form of cell death based on DNA damage and PARP-1 dependency. Nevertheless, its specific role in the context of gastric cancer (GC) remains uncertain. METHODS: In this study, we integrated multi-omics algorithms to investigate the molecular characteristics of parthanatos in GC. A series of bioinformatics algorithms were utilized to explore clinical heterogeneity of GC and further predict the clinical outcomes. RESULTS: Firstly, we conducted a comprehensive analysis of the omics features of parthanatos in various human tumors, including genomic mutations, transcriptome expression, and prognostic relevance. We successfully identified 7 cell types within the GC microenvironment: myeloid cell, epithelial cell, T cell, stromal cell, proliferative cell, B cell, and NK cell. When compared to adjacent non-tumor tissues, single-cell sequencing results from GC tissues revealed elevated scores for the parthanatos pathway across multiple cell types. Spatial transcriptomics, for the first time, unveiled the spatial distribution characteristics of parthanatos signaling. GC patients with different parthanatos signals often exhibited distinct immune microenvironment and metabolic reprogramming features, leading to different clinical outcomes. The integration of parthanatos signaling and clinical indicators enabled the creation of novel survival curves that accurately assess patients' survival times and statuses. CONCLUSIONS: In this study, the molecular characteristics of parthanatos' unicellular and spatial transcriptomics in GC were revealed for the first time. Our model based on parthanatos signals can be used to distinguish individual heterogeneity and predict clinical outcomes in patients with GC.


Assuntos
Parthanatos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Transcriptoma , Análise de Sequência de RNA , Algoritmos , Microambiente Tumoral/genética
2.
Aging (Albany NY) ; 16(5): 4862-4888, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460947

RESUMO

Lysosomal-dependent cell death (LDCD) has an excellent therapeutic effect on apoptosis-resistant and drug-resistant tumors; however, the important role of LDCD-related genes (LDCD-RGs) in kidney renal clear cell carcinoma (KIRC) has not been reported. Initially, single-cell atlas of LDCD signal in KIRC was comprehensively depicted. We also emphasized the molecular characteristics of LDCD-RGs in various human neoplasms. Predicated upon the expressive quotients of LDCD-RGs, we stratified KIRC patients into tripartite cohorts denoted as C1, C2, and C3. Those allocated to the ambit of C1 evinced the most sanguine prognosis within the KIRC cohort, underscored by the acme of LDCD-RGs scores. This further confirms the significant role that LDCD-RGs play in both the pathophysiological foundation and clinical implications of KIRC. In culmination, by virtue of employing the LASSO-Cox analytical modality, we have ushered in an innovative and avant-garde prognostic framework tailored for KIRC, predicated on the bedrock of LDCD-RGs. The assemblage of KIRC instances was arbitrarily apportioned into constituents inclusive of a didactic cohort, an internally wielded validation cadre, and an externally administered validation cohort. Concurrently, patients were dichotomized into strata connoting elevated jeopardy synonymous with adverse prognostic trajectories, and conversely, diminished risk tantamount to favorable prognoses, contingent on the calibrated expressions of LDCD-RGs. Succinctly, our investigative findings serve to underscore the cardinal capacity harbored by LDCD-RGs within the KIRC milieu, concurrently birthing a pioneering prognostic schema intrinsically linked to the trajectory of KIRC and its attendant prognoses.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/genética , Morte Celular , Neoplasias Renais/genética , Rim
3.
Environ Toxicol ; 39(4): 2182-2196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112449

RESUMO

BACKGROUND: Phagocytosis is of vital importance in tumor immune response. The alteration of phagocytosis in low-grade glioma (LGG) has not been investigated. METHODS: The mRNA, copy number variation, single nucleotide variation, and methylation levels of phagocytosis-related genes were summarized in pan-cancer. Non-negative matrix factorization clustering was utilized to identify two LGG subtypes. LASSO regression analysis was performed to construct a phagocytosis-related prognostic signature (PRPS). Immune characteristics, immunotherapy response, and targeted-drug sensitivity were further explored. The phagocytosis activity in glioma was evaluated using scRNA-seq data. Multiplex immunohistochemical (m-IHC) technology was performed to identify the tumor-infiltrating immune cells in LGG. RESULTS: The phagocytosis-related genes altered obviously in pan-cancer compared with corresponding normal tissues. Two LGG subtypes were obtained and the subtype with poor prognosis was combined with lower tumor purity, more active immune-related pathways, increasing infiltration of CD4+ T cells, CD8+ T cells, and natural killer (NK) cells, decreasing infiltration of macrophages, mast cells, and neutrophils, distinct pathway activity and cell death status, greater response to immunotherapy, and higher sensitivity to cyclophosphamide, erlotinib, gefitinib, lapatinib, and sorafenib. In addition, a PRPS involving 10 genes (i.e., SLC11A1, CAMK1D, PLA2G5, STAP1, ALOX15, PLCG2, SFTPD, AZU1, RAB27A, and LAMTOR2) was constructed to estimate the risk level of each LGG sample and high risk LGG patients had poor prognosis, upregulated infiltration of neutrophil, macrophage, Treg, and myeloid dendritic cell, down regulated infiltration of monocyte and NK cell, and increasing expression of large number of immune checkpoint genes. The phagocytosis activity is notably active in monocyte/macrophage. The m-IHC results confirmed increased infiltration of macrophages and neutrophils in LGG samples with high SLC11A1 expression. CONCLUSION: The molecular characteristics of phagocytosis were revealed and the PRPS laid the foundation for personalized therapy in LGG.


Assuntos
Variações do Número de Cópias de DNA , Glioma , Humanos , Fagocitose , Glioma/genética , Macrófagos , Biologia Computacional
4.
J Transl Med ; 21(1): 871, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037058

RESUMO

BACKGROUND: Tumor cells with stemness in breast cancer might facilitate the immune microenvironment's suppression process and led to anti-tumor immune effects. The primary objective of this study was to identify potential targets to disrupt the communication between cancer cell stemness and the immune microenvironment. METHODS: In this study, we initially isolated tumor cells with varying degrees of stemness using a spheroid formation assay. Subsequently, we employed RNA-seq and proteomic analyses to identify genes associated with stemness through gene trend analysis. These stemness-related genes were then subjected to pan-cancer analysis to elucidate their functional roles in a broader spectrum of cancer types. RNA-seq data of 3132 patients with breast cancer with clinical data were obtained from public databases. Using the identified stemness genes, we constructed two distinct stemness subtypes, denoted as C1 and C2. We subsequently conducted a comprehensive analysis of the differences between these subtypes using pathway enrichment methodology and immune infiltration algorithms. Furthermore, we identified key immune-related stemness genes by employing lasso regression analysis and a Cox survival regression model. We conducted in vitro experiments to ascertain the regulatory impact of the key gene on cell stemness. Additionally, we utilized immune infiltration analysis and pan-cancer analysis to delineate the functions attributed to this key gene. Lastly, single-cell RNA sequencing (scRNA-seq) was employed to conduct a more comprehensive examination of the key gene's role within the microenvironment. RESULTS: In our study, we initially identified a set of 65 stemness-related genes in breast cancer cells displaying varying stemness capabilities. Subsequently, through survival analysis, we pinpointed 41 of these stemness genes that held prognostic significance. We observed that the C2 subtype exhibited a higher stemness capacity compared to the C1 subtype and displayed a more aggressive malignancy profile. Further analysis using Lasso-Cox algorithm identified LDLR as a pivotal immune-related stemness gene. It became evident that LDLR played a crucial role in shaping the immune microenvironment. In vitro experiments demonstrated that LDLR regulated the cell stemness of breast cancer. Immune infiltration analysis and pan-cancer analysis determined that LDLR inhibited the proliferation of immune cells and might promote tumor cell progression. Lastly, in our scRNA-seq analysis, we discovered that LDLR exhibited associations with stemness marker genes within breast cancer tissues. Moreover, LDLR demonstrated higher expression levels in tumor cells compared to immune cells, further emphasizing its relevance in the context of breast cancer. CONCLUSION: LDLR is an important immune stemness gene that regulates cell stemness and enhances the crosstalk between breast cancer cancer cell stemness and tumor immune microenvironment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Multiômica , Proteômica , Algoritmos , Lipoproteínas LDL , Microambiente Tumoral
5.
Front Oncol ; 13: 1227606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941546

RESUMO

Background: Interferon-γ (IFN-γ) is a key cytokine with diverse biological functions, including antiviral defense, antitumor activity, immune regulation, and modulation of cellular processes. Nonetheless, its role in pancreatic cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore the role of Interferon-γ related genes (IFN-γGs) in the progression of PC development. Methodology: Transcriptomic data from 930 PC were sourced from TCGA, GEO, ICGC, and ArrayExpress, and 93 IFN-γGs were obtained from the MSigDB. We researched the characteristics of IFN-γGs in pan-cancer. Subsequently, the cohort of 930 PC was stratified into two distinct subgroups using the NMF algorithm. We then examined disparities in the activation of cancer-associated pathways within these subpopulations through GSVA analysis. We scrutinized immune infiltration in both subsets and probed classical molecular target drug sensitivity variations. Finally, we devised and validated a novel IFN-γ related prediction model using LASSO and Cox regression analyses. Furthermore, we conducted RT-qPCR and immunohistochemistry assays to validate the expression of seven target genes included in the prediction model. Results: We demonstrated the CNV, SNV, methylation, expression levels, and prognostic characteristics of IFN-γGs in pan-cancers. Notably, Cluster 2 demonstrated superior prognostic outcomes and heightened immune cell infiltration compared to Clusters 1. We also assessed the IC50 values of classical molecular targeted drugs to establish links between IFN-γGs expression levels and drug responsiveness. Additionally, by applying our prediction model, we segregated PC patients into high-risk and low-risk groups, identifying potential benefits of cisplatin, docetaxel, pazopanib, midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the low-risk group. The expression levels of these model genes were further verified through HPA website data and qRT-PCR assays in PC cell lines and tissues. Conclusion: This study unveils IFN-γGs related molecular subsets in pancreatic cancer for the first time, shedding light on the pivotal role of IFN-γGs in the progression of PC. Furthermore, we establish an IFN-γGs related prognostic model for predicting the survival of PC, offering a theoretical foundation for exploring the precise mechanisms of IFN-γGs in PC.

6.
Aging (Albany NY) ; 15(20): 11313-11330, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847185

RESUMO

Kidney renal clear cell carcinoma (KIRC), a common malignant tumor of the urinary system, is the most aggressive renal tumor subtype. Since the discovery of nuclear factor kappa B (NF-κB) in 1986, many studies have demonstrated abnormal NF-κB signaling is associated with the development of various cancers, including kidney renal clear cell carcinoma. In this study, the relationship between NF-κB and kidney renal clear cell carcinoma was confirmed using bioinformatics analysis. First, we explored the differential expression of copy number variation (CNV), single nucleotide variant (SNV), and messenger RNA (mRNA) in NF-κB-related genes in different types of cancer, as well as the impact on cancer prognosis and sensitivity to common chemotherapy drugs. Then, we divided the mRNA expression levels of NF-κB-related genes in KIRC patients into three groups through GSVA cluster analysis and explored the correlation between the NF-κB pathway and clinical data of KIRC patients, classical cancer-related genes, common anticancer drug responsiveness, and immune cell infiltration. Finally, 11 tumor-related genes were screened using least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. In addition, we used the UALCAN and HPA databases to verify the protein levels of three key NF-κB-related genes (CHUK, IKGGB, and IKBKG) in KIRC. In conclusion, our study established a prognostic survival model based on NF-κB-related genes, which can be used to predict the prognosis of patients with KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , NF-kappa B/genética , Variações do Número de Cópias de DNA , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , RNA Mensageiro , Rim , Quinase I-kappa B
7.
Aging (Albany NY) ; 15(18): 9718-9742, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37728418

RESUMO

Pancreatic cancer, one of the most prevalent tumors of the digestive system, has a dismal prognosis. Cancer of the pancreas is distinguished by an inflammatory tumor microenvironment rich in fibroblasts and different immune cells. Neutrophils are important immune cells that infiltrate the microenvironment of pancreatic cancer tumors. The purpose of this work was to examine the complex mechanism by which neutrophils influence the carcinogenesis and development of pancreatic cancer and to construct a survival prediction model based on neutrophil marker genes. We incorporated the GSE111672 dataset, comprising RNA expression data from 27,000 cells obtained from 3 patients with PC, and conducted single-cell data analysis. Thorough investigation of pancreatic cancer single-cell RNA sequencing data found 350 neutrophil marker genes. Using The Cancer Genome Atlas (TCGA), GSE28735, GSE62452, GSE57495, and GSE85916 datasets to gather pancreatic cancer tissue transcriptome data, and consistent clustering was used to identify two categories for analyzing the influence of neutrophils on pancreatic cancer. Using the Random Forest algorithm and Cox regression analysis, a survival prediction model for pancreatic cancer was developed, the model showed independent performance for survival prognosis, clinic pathological features, immune infiltration, and drug sensitivity. Multivariate Cox analysis findings revealed that the risk scores derived from predictive models is independent prognostic markers for pancreatic patients. In conclusion, based on neutrophil marker genes, this research created a molecular typing and prognostic grading system for pancreatic cancer, this system was very accurate in predicting the prognosis, tumor immune microenvironment status, and pharmacological treatment responsiveness of pancreatic cancer patients.

8.
Sci Rep ; 13(1): 13788, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666853

RESUMO

Melanoma is a malignant tumor of melanocytes and is often considered immunogenic cancer. Toll-like receptor-related genes are expressed differently in most types of cancer, depending on the immune microenvironment inside cancer, and the key function of Toll-like receptors (TLRs) for melanoma has not been fully elucidated. Based on multi-omics data from TCGA and GEO databases, we first performed pan-cancer analysis on TLR, including CNV, SNV, and mRNA changes in TLR-related genes in multiple human cancers, as well as patient prognosis characterization. Then, we divided melanoma patients into three subgroups (clusters 1, 2, and 3) according to the expression of the TLR pathway, and explored the correlation between TLR pathway and melanoma prognosis, immune infiltration, metabolic reprogramming, and oncogene expression characteristics. Finally, through univariate Cox regression analysis and LASSO algorithm, we selected six TLR-related genes to construct a survival prognostic model, divided melanoma patients into the training set, internal validation set 1, internal validation set 2, and external validation set for multiple validations, and discussed the correlation between model genes and clinical features of melanoma patients. In conclusion, we constructed a prognostic survival model based on TLR-related genes that precisely and independently demonstrated the potential to assess the prognosis and immune traits of melanoma patients, which is critical for patients' survival.


Assuntos
Melanoma , Humanos , Melanoma/genética , Oncogenes , Melanócitos , Algoritmos , Transdução de Sinais/genética , Microambiente Tumoral/genética
9.
Sci Rep ; 13(1): 13564, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604837

RESUMO

Oxidative stress (OS), which impacts lipid metabolic reprogramming, can affect the biological activities of cancer cells. How oxidative stress and phospholipid metabolism (OSPM) influence the prognosis of pancreatic cancer (PC) needs to be elucidated. The metabolic data of 35 pancreatic tumor samples, 34 para-carcinoma samples, and 31 normal pancreatic tissues were obtained from the previously published literature. Pan-cancer samples were obtained from The Cancer Genome Atlas (TCGA). And the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), ArrayExpress, and the Genotype-Tissue Expression (GTEx) databases were searched for more PC and normal pancreatic samples. The metabolites in PC were compared with normal and para-carcinoma tissues. The characteristics of the key OSPM genes were summarized in pan-cancer. The random survival forest analysis and multivariate Cox regression analysis were utilized to construct an OSPM-related signature. Based on this signature, PC samples were divided into high- and low-risk subgroups. The dysregulations of the tumor immune microenvironment were further investigated. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was conducted to investigate the expression of genes in the signature in PC and normal tissues. The protein levels of these genes were further demonstrated. In PC, metabolomic studies revealed the alteration of PM, while transcriptomic studies showed different expressions of OSPM-related genes. Then 930 PC samples were divided into three subtypes with different prognoses, and an OSPM-related signature including eight OSPM-related genes (i.e., SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, ECT2, SLC22A3, and FGD6) was developed. High- and low-risk subgroups divided by the signature showed different prognoses, expression levels of immune checkpoint genes, immune cell infiltration, and tumor microenvironment. The risk score was negatively correlated with the proportion of TIL, pDC, Mast cell, and T cell co-stimulation. The expression levels of genes in the signature were verified in PC and normal samples. The protein levels of SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, and SLC22A3 showed up-regulation in PC samples compared with normal tissues. After integrating metabolomics and transcriptomics data, the alterations in OSPM in PC were investigated, and an OSPM-related signature was developed, which was helpful for the prognostic assessment and individualized treatment for PC.


Assuntos
Carcinoma , Neoplasias Pancreáticas , Humanos , Metaloproteinase 14 da Matriz , Multiômica , Neoplasias Pancreáticas/genética , Estresse Oxidativo/genética , Fosfolipídeos , Microambiente Tumoral/genética , Neoplasias Pancreáticas
10.
ISME J ; 17(10): 1535-1551, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553473

RESUMO

The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Bactérias/metabolismo , Neoplasias/terapia , Dano ao DNA
11.
Aging (Albany NY) ; 15(13): 6264-6291, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405952

RESUMO

BACKGROUND: Individuals with low-grade glioma (LGG) have a dismal prognosis, and most patients will eventually progress to high-grade disease. Therefore, it is crucial to accurately determine their prognoses. METHODS: Seventy-nine NK cell genes were downloaded from the LM22 database and univariate Cox regression analysis was utilized to detect NK cell-related genes affecting prognosis. Molecular types were established for LGG using the "ConsensusClusterPlus" R package. The results from a functional enrichment analysis and the immune microenvironment were intensively explored to determine molecular heterogeneity and immune characteristics across distinct subtypes. Furthermore, a RiskScore model was developed and verified using expression profiles of NK cells, and a nomogram consisting of the RiskScore model and clinical traits was constructed. Moreover, pan-cancer traits of NK cells were also investigated. RESULTS: The C1 subtype included the greatest amount of immune infiltration and the poorest prognosis among well-established subtypes. The majority of enriched pathways were those involved in tumor progression, including epithelial-mesenchymal transition and cell cycle pathways. Differentially expressed genes among distinct subtypes were determined and used to develop a novel RiskScore model. This model was able to distinguish low-risk patients with LGG from those with high-risk disease. An accurate nomogram including the RiskScore, disease grade and patient's age was constructed to predict clinical outcomes of LGG patients. Finally, a pan-cancer analysis further highlighted the crucial roles of NK cell-related genes in the tumor microenvironment. CONCLUSIONS: An NK cell-related RiskScore model can accurately predict the prognoses of patients with LGG and provide valuable insights into personalized medicine.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Nomogramas , Células Matadoras Naturais , Ciclo Celular , Microambiente Tumoral/genética
12.
Front Pharmacol ; 14: 1184794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251321

RESUMO

Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and ß/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.

13.
J Pharmacol Exp Ther ; 376(3): 464-472, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33397676

RESUMO

Recent studies suggest an important role for RNA, especially noncoding RNA, in inflammatory bowel disease (IBD) and colon cancer. Drug development based on regulating RNA rather than protein is a promising new area. Phytochemicals are naturally occurring plant-derived compounds with chemical diversity, biologic activity, easy availability, and low toxicity. Many phytochemicals have been shown to exert protective effects on IBD and colon cancer through modulation of RNAs. The aim of this study was to summarize the advancements of phytochemicals in regulating RNA for the treatment of IBD and colon cancer. This review involves many phytochemicals, including polyphenols, flavones, and alkaloids, which can influence various types of RNAs, including microRNA, long noncoding RNA, as well as messenger RNA, by influencing a variety of upstream molecules or regulating epigenetic processes. The limitation for many current studies is that the specific mechanisms of phytochemicals regulating RNA have not been fully uncovered. Accompanied by more identified functions of RNAs, especially noncoding RNA functions, the screening of RNA-regulating phytochemicals has presented challenges as well as opportunities for the prevention and treatment of IBD and colon cancer. SIGNIFICANCE STATEMENT: Noncoding RNAs, which constitute the majority of the human transcriptional genome, play a key role in the disease state and are considered as important therapeutic targets in inflammatory bowel disease (IBD) and colon cancer. Recent studies have shown that phytochemicals regulate the expression of many noncoding RNAs involved in IBD and colon cancer. Therefore, identifying the specific molecular mechanism of phytochemicals regulating noncoding RNA in disease models may result in novel and effective therapeutic opportunities.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Terapia de Alvo Molecular/métodos , Compostos Fitoquímicos/farmacologia , RNA/genética , Animais , Humanos , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...