Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603566

RESUMO

Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a destructive insect pest of many crops. Rickettsia infection in different cryptic species of B. tabaci has been observed worldwide. Understanding the interactions between these 2 organisms is critical to developing Rickettsia-based strategies to control B. tabaci and thereby reduce the transmission of related vector-borne viruses. In this study, we investigated the effects of Rickettsia infection on the biological characteristics of the Middle East Asia Minor 1 (MEAM1) strain of B. tabaci through biological analysis of infected and uninfected individuals. The results of this study suggest that Rickettsia may confer fitness benefits. These benefits include increased fertility, improved survival rates, accelerated development, and resulted in female bias. We also investigated the transcriptomics impact of Rickettsia infection on B. tabaci by performing a comparative RNA-seq analysis of nymphs and adult females, both with and without the infection. Our analysis revealed 218 significant differentially expressed genes (DEGs) in infected nymphs compared to uninfected ones and 748 significant DEGs in infected female adults compared to their uninfected whiteflies. Pathway analysis further revealed that Rickettsia can affect many important metabolic pathways in whiteflies. The results suggest that Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the host to ensure its survival. Overall, our findings suggest that Rickettsia has beneficial effects on B. tabaci and offered insights into the potential molecular mechanisms governing the interactions between Rickettsia and B. tabaci MEAM1.

2.
Insect Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571329

RESUMO

The silkworm, a crucial model organism of the Lepidoptera, offers an excellent platform for investigating the molecular mechanisms underlying the innate immune response of insects toward pathogens. Over the years, researchers worldwide have identified numerous immune-related genes in silkworms. However, these identified silkworm immune genes are not well classified and not well known to the scientific community. With the availability of the latest genome data of silkworms and the extensive research on silkworm immunity, it has become imperative to systematically categorize the immune genes of silkworms with different database IDs. In this study, we present a meticulous organization of prevalent immune-related genes in the domestic silkworm, using the SilkDB 3.0 database as a reliable source for updated gene information. Furthermore, utilizing the available data, we classify the collected immune genes into distinct categories: pattern recognition receptors, classical immune pathways, effector genes and others. In-depth data analysis has enabled us to predict some potential antiviral genes. Subsequently, we performed antiviral experiments on selected genes, exploring their impact on Bombyx mori nucleopolyhedrovirus replication. The outcomes of this research furnish novel insights into the immune genes of the silkworm, consequently fostering advancements in the field of silkworm immunity research by establishing a comprehensive classification and functional understanding of immune-related genes in the silkworm. This study contributes to the broader understanding of insect immune responses and opens up new avenues for future investigations in the domain of host-pathogen interactions.

3.
Front Immunol ; 15: 1349428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420120

RESUMO

The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.


Assuntos
Bombyx , Animais , Trato Gastrointestinal/metabolismo , Insetos , Perfilação da Expressão Gênica , Imunidade Inata , Mamíferos
4.
J Innate Immun ; 16(1): 173-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38387449

RESUMO

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Assuntos
Bombyx , Encéfalo , Hemócitos , Imunidade Inata , Larva , Muramidase , Animais , Bombyx/imunologia , Bombyx/virologia , Encéfalo/imunologia , Encéfalo/virologia , Larva/imunologia , Larva/virologia , Hemócitos/imunologia , Muramidase/metabolismo , Muramidase/genética , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/imunologia , Análise de Célula Única , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
5.
Animals (Basel) ; 14(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38396623

RESUMO

Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.

6.
Insect Biochem Mol Biol ; 164: 104043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013005

RESUMO

The midgut is an important barrier against microorganism invasion and proliferation, yet is the first tissue encountered when a baculovirus naturally invades the host. However, only limited knowledge is available how different midgut cell types contribute to the immune response and the clearance or promotion of viral infection. Here, single-nucleus RNA sequencing (snRNA seq) was employed to analyze the responses of various cell subpopulations in the silkworm larval midgut to B. mori nucleopolyhedrovirus (BmNPV) infection. We identified 22 distinct clusters representing enteroendocrine cells (EEs), enterocytes (ECs), intestinal stem cells (ISCs), Goblet cell-like and muscle cell types in the BmNPV-infected and uninfected silkworm larvae midgut at 72 h post infection. Further, our results revealed that the strategies for immune escape of BmNPV in the midgut at the late stage of infection include (1) inhibiting the response of antiviral pathways; (2) inhibiting the expression of antiviral host factors; (3) stimulating expression levels of genes promoting BmNPV replication. These findings suggest that the midgut, as the first line of defense against the invasion of the baculovirus, has dual characteristics of "resistance" and "tolerance". Our single-cell dataset reveals the diversity of silkworm larval midgut cells, and the transcriptome analysis provides insights into the interaction between host and virus infection at the single-cell level.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/metabolismo , Bombyx/genética , Bombyx/metabolismo , Larva/metabolismo , Sistema Digestório , Antivirais
7.
Int J Biol Macromol ; 253(Pt 7): 127443, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844812

RESUMO

A capsular polysaccharide, namely CPS-2, was isolated from Lactobacillus fermentum GBJ, purified using DEAE-52 anion exchange chromatography, and structurally characterized. We found that CPS-2 is homogenous, has an average molecular weight of 377 KDa, and is mainly composed of galactose and glucose at a molar ratio of 1.54:1.00. Its backbone comprises α-D-Galp-(1 â†’ 3), α-D-Galp-(1 â†’ 3,6), ß-D-Glcp-(1 â†’ 2), ß-D-Galp-(1 â†’ 6), and α-D-Galp-(1 â†’ 4) residues with a side chain of ß-D-Glcp-(1→). CPS-2 exerts an immunomodulatory effect by improving the proliferation and phagocytosis of macrophage RAW264.7 and promoting the secretion of NO and cytokines. The maximum secretion levels of IL-1ß, IL-6, IL-10, and TNF-α were 1.96-, 0.11-, 0.22-, and 0.46-fold higher than those of the control, respectively. Furthermore, CPS-2 could significantly enhance the antioxidant system, extend lifespan, and improve stress tolerance of Caenorhabditis elegans at both exposure doses of 31.25 and 62.5 µg/mL. The average lifespan of nematodes reached a maximum in the 62.5 µg/mL-treated group after 10.39 days, 6.56 h, and 23.56 h in normal, oxidative stress, and heat shock environment, with extension percentages of 16.61 %, 43.23 %, and 15.77 %, respectively; therefore, CPS-2 displays an anti-aging effect. The significant bioactivity of CPS-2 promotes its application as a promising immunomodulatory and anti-aging ingredient in the food or pharmaceutical field.


Assuntos
Caenorhabditis elegans , Limosilactobacillus fermentum , Animais , Polissacarídeos/química , Citocinas , Macrófagos
8.
J Immunol ; 211(1): 140-153, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171193

RESUMO

The fat body plays a central role in the regulation of the life cycle of insects and acts as the major site for detoxification, nutrient storage, energy metabolism, and innate immunity. However, the diversity of cell types in the fat body, as well as how these cell subsets respond to virus infection, remains largely unknown. We used single-nucleus RNA sequencing to identify 23 distinct clusters representing adipocyte, hemocyte, epithelial cell, muscle cell, and glial cell types in the fat body of silkworm larvae. Further, by analysis of viral transcriptomes in each cell subset, we reveal that all fat body cells could be infected by Bombyx mori nucleopolyhedrovirus (BmNPV) at 72 h postinfection, and that the majority of infected cells carried at least a medium viral load, whereas most cells infected by BmNPV at 24 h postinfection had only low levels of infection. Finally, we characterize the responses occurring in the fat body cell clusters on BmNPV infection, which, on one hand, mainly reduce their metabolic functions, involving energy, carbohydrates, lipids, and amino acids, but, on the other hand, initiate a strong antiviral response. Our single-nucleus RNA sequencing analysis reveals the diversity of insect fat body cells and provides a resource of gene expression profiles for a systems-level understanding of their response to virus infection.


Assuntos
Bombyx , Corpo Adiposo , Animais , Corpo Adiposo/metabolismo , Bombyx/genética , Bombyx/metabolismo , Larva , Imunidade
10.
Insect Sci ; 30(6): 1595-1606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37144516

RESUMO

Fatty acid binding proteins (FABPs) play an important role as endogenous cytoprotectants. However, studies on FABPs in invertebrates are scarce. Previously, we discovered Bombyx mori fatty acid binding protein 1 (BmFABP1) through co-immunoprecipitation. Here, we cloned and identified BmFABP1 from BmN cells. The results of immunofluorescence indicated that BmFABP1 was localized in the cytoplasm. The tissue expression profile of silkworms showed that BmFABP1 was expressed in all tissues except hemocytes. The expression level of BmFABP1 gradually decreases in BmN cells and B. mori larvae after infection with B. mori nucleopolyhedrovirus (BmNPV). Upregulation of BmFABP1 expression through overexpression or WY14643 treatment significantly inhibited the replication of BmNPV, while downregulation of BmFABP1 expression by RNA interference promoted the replication of BmNPV. The same results were obtained in experiments on silkworm larvae. These results suggest that BmNPV induces BmFABP1 downregulation to promote its proliferation and that BmFABP1 has a potential anti-BmNPV role. This is the first report on the antiviral effect of BmFABP1 in silkworms and provides new insights into the study of the FABP protein family. Also, it is important to study BmNPV resistance in silkworms to breed transgenic silkworms with BmNPV resistance.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Regulação para Baixo , Nucleopoliedrovírus/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Bombyx/metabolismo , Larva/metabolismo , Proliferação de Células
11.
J Agric Food Chem ; 71(16): 6338-6347, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053003

RESUMO

Bombyx mori cypovirus 1 (BmCPV1), a primary pathogen of the silkworm, is a typical dsRNA virus belonging to the Reoviridae family. In this study, a total of 2520 differentially expressed genes (DEGs) were identified by RNA-seq analysis of the silkworm midgut after BmCPV1 infection and Gene Ontology (GO) functional annotation showed that the DEGs predominantly functioned in binding (molecular function), cell (cellular component), and cellular processes (biological process). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation revealed that the DEGs were mainly distributed in global and overview metabolism maps, translation, and signal transduction. Among the identified DEGs, BmPGRP-S5 belongs to the peptidoglycan recognition protein (PGRP) family. Previous studies have revealed that PGRPs were involved in the interactions between silkworm and BmCPV1. Here, we explored the effect of BmPGRP-S5 on BmCPV1 replication and demonstrated that BmPGRP-S5 promotes the proliferation of BmCPV1 in BmN cells through overexpression or knockdown experiments. Knocking down of BmPGRP-S5 in silkworm larvae similarly promoted the proliferation of BmCPV1. Through experimental validation, we therefore determined that BmPGRP-S5 acts as a proviral host factor for BmCPV1 infection. This study clarifies the proliferation mechanism of BmCPV1 and provides new insights into the functional role of BmPGRP-S5.


Assuntos
Bombyx , Reoviridae , Animais , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Proliferação de Células
12.
Insects ; 14(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835756

RESUMO

Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.

13.
J Control Release ; 353: 303-316, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402235

RESUMO

Silk sericin is a class of protein biopolymers produced by silkworms. Increasing attention has been paid to silk sericin for biomedical applications in the last decade, not only because of its excellent biocompatibility and biodegradability but also due to the pharmacological activities stemming from its unique amino acid compositions. In this review, the biological properties of silk sericin, including curing specific diseases and promoting tissue regeneration, as well as underlying mechanisms are summarized. We consider the antioxidant activity of silk sericin as a fundamental property, which could account for partial biological activities, despite the exact mechanisms of silk sericin's effect remaining unknown. Based on the reactive groups on silk sericin, approaches of bottom-up fabrication of silk sericin-based biomaterials are highlighted, including non-covalent interactions and chemical reactions (reduction, crosslinking, bioconjugation, and polymerization). We then briefly present the cutting-edge advances of silk sericin-based biomaterials applied in tissue engineering and drug delivery. The challenges of silk sericin-based biomaterials are proposed. With more bioactivities and underlying mechanisms of silk sericin uncovered, it is going to boost the therapeutic potential of silk sericin-based biomaterials.


Assuntos
Bombyx , Sericinas , Animais , Sericinas/uso terapêutico , Sericinas/química , Sericinas/farmacologia , Seda , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/química
14.
Insect Sci ; 30(5): 1378-1392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36495071

RESUMO

The Piwi-interacting RNA (piRNA) pathway has been shown to be involved in the antiviral defense against RNA viruses, especially in mosquitoes, but its universality has been questioned. Here, we used the Bombyx mori nucleopolyhedrovirus (BmNPV) -infected silkworm as a model to explore the effects of the key factors of piRNA pathway, BmAgo3 and Siwi, on replication of a large DNA virus (belonging to the family of Baculoviridae). We demonstrated that BmAgo3 and Siwi could promote the replication of BmNPV through both overexpression and knockdown experiments in BmN cell lines and silkworm larvae. In addition, we also studied the effect of PIWI-class genes on Autographa californica nucleopolyhedrovirus (AcMNPV) replication in the Spodoptera frugiperda cell line Sf9. By knocking down the expression of PIWI-class genes in Sf9, we found that Piwi-like-1 and Piwi-like-2-3 could inhibit AcMNPV replication, while Piwi-like-4-5 promoted virus replication. Our study provides compelling evidence that the piRNA pathway affects host infection by exogenous viruses in Lepidoptera. Also, our results reflect the diversity of the roles of PIWI-class genes in virus infection of the host across species. This study is the first to explore the interaction of PIWI-class proteins with DNA viruses, providing new insights into the functional roles of the piRNA pathway.

15.
Insect Sci ; 30(2): 321-337, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35989418

RESUMO

Cholesterol-25-hydroxylase (CH25H) has been identified as an interferon-stimulated gene (ISG) in mammals that exerts its antiviral effects by catalyzing the conversion of cholesterol to 25-hydroxycholesterol (25HC). However, invertebrates lack an antiviral system homologous to vertebrate interferons (IFNs) because the genomes of invertebrates do not encode IFN-like cytokines. Nevertheless, CH25H is present in insect genomes and it therefore deserves further study of whether and by which mechanism it could exert an antiviral effect in invertebrates. In this study, the Bombyx mori CH25H (BmCH25H) gene, of which the encoded protein has high homology with other lepidopteran species, was identified and located on chromosome 9. Interestingly, we found that the expression of BmCH25H was significantly upregulated in B. mori nucleopolyhedrovirus (BmNPV) -infected BmN cells and silkworm (B. mori) larvae at the early infection stage. The inhibitory effect of BmCH25H on BmNPV replication was further demonstrated to depend on its catalytic residues to convert cholesterol to 25HC. More importantly, we demonstrated that during BmNPV infection, BmCH25H expression was increased through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, similar to the induction of ISGs following virus infection in vertebrates. This is the first report that CH25H has antiviral effects in insects; the study also elucidates the regulation of its expression and its mechanism of action.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Interferons/metabolismo , Interferons/farmacologia , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , Antivirais/metabolismo , Colesterol/metabolismo , Colesterol/farmacologia , Vertebrados , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Mamíferos
16.
Int J Biol Macromol ; 223(Pt A): 830-836, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36372108

RESUMO

The silkworm, Bombyx mori, a model Lepidopteran specie, is an important economic insect. It is specifically infected by Bombyx mori nucleopolyhedrovirus (BmNPV), causing huge losses to the sericulture industry. Therefore, the understandings of the interaction mechanism between BmNPV and the host will help to provide the theoretical basis for the sericulture industry to control BmNPV. Apolipoprotein D (ApoD) is a member of lipid transport family and capable of binding to a variety of lipophilic ligands. ApoD is mainly used in neurodegenerative disease research in mammals, and there is little research on ApoD against viruses. Here, we explored the effects of Bombyx mori Apolipoprotein D (BmApoD) on BmNPV replication. We knocked out and overexpressed BmApoD in BmN cells and infected them with Bombyx mori nucleopolyhedrovirus (BmNPV). The results showed that BmApoD promote the replication of BmNPV in BmN cells. It was also confirmed that BmApoD promote the replication of BmNPV after knocking down BmApoD in silkworm larvae. This study is the first to explore the role of ApoD in insect-virus interactions, providing new insights into the functional role of ApoD.


Assuntos
Bombyx , Doenças Neurodegenerativas , Animais , Apolipoproteínas D/metabolismo , Proteínas de Insetos/metabolismo , Bombyx/metabolismo , Proliferação de Células , Mamíferos/metabolismo
17.
Front Nutr ; 9: 1017765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313087

RESUMO

The nutritional value and bioactivity of black beans are enhanced when fermented as tempeh, but their bioaccessibility and bioactivity after ingestion remain unclear. In this study, black bean tempeh and unfermented black beans were digested in vitro and changes in protein degradation, phenolic compound release, angiotensin I-converting enzyme (ACE)-inhibitory activity, and antioxidant activity between the two groups were compared. We observed that the soluble protein content of digested black bean tempeh was generally significantly higher than that of digested unfermented black beans at the same digestion stage (P < 0.05). The degree of protein hydrolysis and the content of <10 kDa peptides were also significantly higher in the digested black bean tempeh than in digested unfermented black beans (P < 0.05). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high-performance liquid chromatography (RP-HPLC) analysis showed that most macromolecular proteins in tempeh had been degraded during fermentation and more of the small peptides were released from black bean tempeh during digestion, respectively. Compared to that of the unfermented black beans, the level of ACE inhibition of black bean tempeh was lower, but this significantly increased to 82.51% following digestion, closing the gap with unfermented black beans. In addition, the total respective levels of phenolics, flavonoids, and proanthocyanidins released from black bean tempeh were 1.21, 1.40, and 1.55 times those of unfermented black beans following in vitro digestion, respectively. Antioxidant activity was also significantly higher in digested black bean tempeh than in digested unfermented black beans and showed a positive correlation with phenolic compound contents (P < 0.05). The results of this study proved that, compared to unfermented black beans, black bean tempeh retained protein and phenolic compound bioaccessibility and antioxidant activity and showed an improved ACE-inhibitory activity even after consumption.

18.
Insects ; 13(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35886751

RESUMO

Virus-host interactions are critical for virus replication, virulence, and pathogenicity. The Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical model baculovirus, representing one of the most common and harmful pathogens in sericulture. Herein, we used co-immunoprecipitation to identify candidate proteins with potential interactions with BmNPV. First, a recombinant BV virus particle rBmBV-egfp-p64-3×flag-gp64sp was constructed using a MultiBac baculovirus multigene expression system. Co-immunoprecipitation experiments were then performed with the recombinant BV virus infected with BmN cells and Dazao silkworms. LC-MS/MS analysis revealed a total of 845 and 1368 candidate proteins were obtained from BmN cells and silkworm samples, respectively. Bioinformatics analysis (Gene Ontology, KEGG Pathway) was conducted for selection of proteins with significant enrichment for further confirmation of the effects on BmNPV replication. Overall, the results showed that SEC61 and PIC promoted the replication of BmNPV, while FABP1 inhibited the replication of BmNPV. In summary, this study reveals the potential proteins involved in BmNPV invasion and proliferation in the host and provides a platform for identifying the potential receptor proteins of BmNPV.

19.
Front Immunol ; 13: 906738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693834

RESUMO

Silent information regulators (Sirtuins) belong to the family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that have diverse functions in cells. Mammalian Sirtuins have seven isoforms (Sirt1-7) which have been found to play a role in viral replication. However, Sirtuin members of insects are very different from mammals, and the function of insect Sirtuins in regulating virus replication is unclear. The silkworm, Bombyx mori, as a model species of Lepidoptera, is also an important economical insect. B. mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects silkworms and causes serious losses in the sericulture industry. Here, we used the infection of the silkworm by BmNPV as a model to explore the effect of Sirtuins on virus replication. We initially knocked down all silkworm Sirtuins, and then infected with BmNPV to analyze its replication. Sirt2 and Sirt5 were found to have potential antiviral functions in the silkworm. We further confirmed the antiviral function of silkworm Sirt5 through its effects on viral titers during both knockdown and overexpression experiments. Additionally, Suramin, a Sirt5 inhibitor, was found to promote BmNPV replication. In terms of molecular mechanism, it was found that silkworm Sirt5 might promote the immune pathway mediated by Relish, thereby enhancing the host antiviral response. This study is the first to explore the role of Sirtuins in insect-virus interactions, providing new insights into the functional role of members of the insect Sirtuin family.


Assuntos
Bombyx , Nucleopoliedrovírus , Sirtuínas , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mamíferos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
20.
Genes (Basel) ; 13(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35627135

RESUMO

Apoptosis plays an important role in virus-host interactions and is a major element of the insect immune response. Exploring the regulatory mechanisms of virus-induced apoptosis through the expression of apoptotic genes holds important research and application value. Functional research on the reported inhibitor of apoptosis proteins (IAPs) mainly focuses on the group I baculovirus, while the functions of the group II baculovirus IAPs remains unclear. To explore its role in the regulation of the apoptosis of insect cells, we constructed the transient expression vector (pIE1 vectors) and the recombinant baculovirus expressing Bsiap genes (from the Buzura suppressaria nucleopolyhedrovirus) of the group II baculovirus. Apoptosis gene expression results and the virus-induced apoptosis rate show that the overexpression of BsIAP1 could promote apoptosis in insect cells. However, the overexpression of BsIAP2 and BsIAP3 decreases the expression of apoptotic genes, revealing an inhibitory effect. Results on the impact of baculovirus-induced apoptosis also confirm that BsIAP1 reduces viral nucleocapsid expression and the baculovirus titer, while BsIAP2 and BsIAP3 increase them significantly. Furthermore, compared with single expression, the co-expression of BsIAP2 and BsIAP3 significantly reduces the rate of virus-induced apoptosis and improves the expression of nucleocapsids and the titer of offspring virus, indicating the synergistic effect on BsIAP2 and BsIAP3. In addition, combined expression of all three BsIAPs significantly reduced levels of intracellular apoptosis-related genes (including apoptosis and anti-apoptosis genes), as well as apoptosis rate and progeny virus titer, indicating that life activities in insect cells are also inhibited. These findings reveal the relationship between apoptosis and group II baculovirus IAP, which provide an experimental and theoretical basis for further exploration of the molecular mechanism between group II baculoviruses and insect cells.


Assuntos
Baculoviridae , Nucleopoliedrovírus , Animais , Apoptose/genética , Baculoviridae/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Insetos/metabolismo , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...