Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026745

RESUMO

The cytokine interleukin-21 (IL-21) is a pivotal T cell-derived signal crucial for germinal center (GC) responses, but the precise mechanisms by which IL-21 influences B cell function remain elusive. Here, we investigated the B cell-intrinsic role of IL-21 signaling by employing a novel IL-21 receptor ( Il21r ) conditional knock-out mouse model and ex vivo culture systems and uncovered a surprising duality of IL-21 signaling in B cells. While IL-21 stimulation of naïve B cells led to Bim-dependent apoptosis, it promoted robust proliferation of pre-activated B cells, particularly class-switched IgG1 + B cells ex vivo . Consistent with this, B cell-specific deletion of Il21r led to a severe defect in IgG1 responses in vivo following immunization. Intriguingly, Il21r -deleted B cells are significantly impaired in their ability to transition from a pre-GC to a GC state following immunization. Although Il21r -deficiency did not affect the proportion of IgG1 + B cells among GC B cells, it greatly diminished the proportion of IgG1 + B cells among the plasmablast/plasma cell population. Collectively, our data suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.

3.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38895335

RESUMO

Hematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit lo subset of HSCs is enriched for multipotential precursors, 1, 2 but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit lo HSCs. Using a preclinical allo-HCT model, we demonstrate that Kit lo HSCs support better thymic recovery, and T-cell reconstitution resulting in improved T cell responses to infection post-HCT. Furthermore, Kit lo HSCs with augmented BM lymphopoiesis mitigate age-associated thymic alterations, thus enhancing T-cell recovery in middle-aged hosts. We find the frequency of the Kit lo subset declines with age, providing one explanation for the reduced frequency of T-competent HSCs and reduced T-lymphopoietic potential in BM precursors of aged mice. 3, 4, 5 Chromatin profiling revealed that Kit lo HSCs exhibit higher activity of lymphoid-specifying transcription factors (TFs), including Zbtb1 . Deletion of Zbtb1 in Kit lo HSCs diminished their T-cell potential, while reinstating Zbtb1 in megakaryocytic-biased Kit hi HSCs rescued T-cell potential, in vitro and in vivo . Finally, we discover an analogous Kit lo HSC subset with enhanced lymphoid potential in human bone marrow. Our results demonstrate that Kit lo HSCs with enhanced lymphoid potential have a distinct underlying epigenetic program.

4.
Sci Immunol ; 9(96): eadj2898, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941478

RESUMO

Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.


Assuntos
Sinapses Imunológicas , Análise de Célula Única , Animais , Sinapses Imunológicas/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Fenômenos Biomecânicos/imunologia , Citotoxicidade Imunológica , Macrófagos/imunologia , Camundongos Endogâmicos C57BL
5.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872000

RESUMO

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Assuntos
Diferenciação Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Antígeno CD56/metabolismo , Muromegalovirus/imunologia , Linhagem da Célula/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos Knockout , Células Cultivadas
6.
Immunity ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878769

RESUMO

Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.

7.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712036

RESUMO

Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.

8.
Comp Med ; 74(2): 121-129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561234

RESUMO

Chlamydia muridarum (Cm), an intracellular bacterium of historical importance, was recently rediscovered as moderately prevalent in research mouse colonies. Cm was first reported as a causative agent of severe pneumonia in mice about 80 y ago, and while it has been used experimentally to model Chlamydia trachomatis infection of humans, there have been no further reports of clinical disease associated with natural infection. We observed clinical disease and pathology in 2 genetically engi- neered mouse (GEM) strains, Il12rb2 KO and STAT1 KO, with impaired interferon-γ signaling and Th1 CD4+ T cell responses in a colony of various GEM strains known to be colonized with and shedding Cm. Clinical signs included poor condition, hunched posture, and poor fecundity. Histopathology revealed disseminated Cm with lesions in pulmonary, gastrointestinal, and urogenital tissues. The presence of Cm was confirmed using both immunohistochemistry for Cm major outer membrane protein-1 antigen and in situ hybridization using a target probe directed against select regions of Cm strain Nigg. Cm was also found in association with a urothelial papilloma in one mouse. These cases provide additional support for excluding Cm from research mouse colonies.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Camundongos Knockout , Fator de Transcrição STAT1 , Animais , Infecções por Chlamydia/patologia , Infecções por Chlamydia/veterinária , Infecções por Chlamydia/microbiologia , Camundongos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Feminino , Receptores de Interleucina-12/deficiência , Receptores de Interleucina-12/genética , Masculino , Pneumopatias/microbiologia , Pneumopatias/patologia , Pneumopatias/veterinária
9.
Immunol Rev ; 323(1): 8-18, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628147

RESUMO

Cells of the mammalian innate immune system have evolved to protect the host from various environmental or internal insults and injuries which perturb the homeostatic state of the organism. Among the lymphocytes of the innate immune system are natural killer (NK) cells, which circulate and survey host tissues for signs of stress, including infection or transformation. NK cells rapidly eliminate damaged cells in the blood or within tissues through secretion of cytolytic machinery and production of proinflammatory cytokines. To perform these effector functions while traversing between the blood and tissues, patrolling NK cells require sufficient fuel to meet their energetic demands. Here, we highlight the ability of NK cells to metabolically adapt across tissues, during times of nutrient deprivation and within tumor microenvironments. Whether at steady state, or during viral infection and cancer, NK cells readily shift their nutrient uptake and usage in order to maintain metabolism, survival, and function.


Assuntos
Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Imunidade Inata , Especificidade de Órgãos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Metabolismo Energético , Microambiente Tumoral/imunologia , Homeostase , Citocinas/metabolismo , Reprogramação Metabólica
10.
Immunol Rev ; 323(1): 5-7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628138
11.
Proc Natl Acad Sci U S A ; 121(11): e2319254121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442180

RESUMO

Natural killer (NK) cells are a vital part of the innate immune system capable of rapidly clearing mutated or infected cells from the body and promoting an immune response. Here, we find that NK cells activated by viral infection or tumor challenge increase uptake of fatty acids and their expression of carnitine palmitoyltransferase I (CPT1A), a critical enzyme for long-chain fatty acid oxidation. Using a mouse model with an NK cell-specific deletion of CPT1A, combined with stable 13C isotope tracing, we observe reduced mitochondrial function and fatty acid-derived aspartate production in CPT1A-deficient NK cells. Furthermore, CPT1A-deficient NK cells show reduced proliferation after viral infection and diminished protection against cancer due to impaired actin cytoskeleton rearrangement. Together, our findings highlight that fatty acid oxidation promotes NK cell metabolic resilience, processes that can be optimized in NK cell-based immunotherapies.


Assuntos
Neoplasias , Viroses , Humanos , Metabolismo dos Lipídeos , Células Matadoras Naturais , Ácidos Graxos
12.
Nature ; 626(8000): 864-873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326607

RESUMO

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Assuntos
Proteínas Inibidoras de Diferenciação , Células de Kupffer , Neoplasias , Animais , Humanos , Camundongos , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/imunologia , Fígado/patologia , Ativação de Macrófagos , Proteínas de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fagocitose
13.
Cell Rep ; 43(3): 113800, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386559

RESUMO

Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.


Assuntos
Infecções por Citomegalovirus , Receptores Imunológicos , Animais , Camundongos , Receptores Imunológicos/metabolismo , Antígeno CD48/metabolismo , Antígenos CD/metabolismo , Ativação Linfocitária , Células Matadoras Naturais , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/metabolismo , Fagocitose
14.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986752

RESUMO

Natural Killer (NK) cells are innate cytotoxic lymphocytes that possess features of adaptive immunity, including antigen specificity and clonal expansion. NK cells rapidly respond to cytokines released during the innate phase of viral infection and are thought to migrate from circulation into infected organs to execute their early effector functions. However, recent evidence suggests that tissue-resident NK cells are among the first responders to viral infection. In this study, we observe that antigen receptor signaling precedes substantial proinflammatory cytokine signaling in a population of NK cells during mouse cytomegalovirus infection. Early antigen receptor signals epigenetically prime NK cells for optimal expansion during the later adaptive phase of the antiviral response. Mechanistically, receptor signaling increases chromatin accessibility at STAT4-binding genomic sites within differentiating NK cells. To promote adaptive programming of NK cells during infection, activating receptor-dependent epigenetic remodeling antagonizes IL-12 driven terminal maturation, poises NK cells for proliferation via sustained CDK6 expression, and antagonizes early apoptosis of short-lived effector cells via suppression of Bim. Thus, antigen receptor signaling alters an IL-12 dependent fate decision during the innate-to-adaptive transition of antiviral NK cells.

15.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790504

RESUMO

Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV-individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56 bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56 bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.

16.
Nat Immunol ; 24(11): 1803-1812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828377

RESUMO

The ability of vertebrates to 'remember' previous infections had once been attributed exclusively to adaptive immunity. We now appreciate that innate lymphocytes also possess memory properties akin to those of adaptive immune cells. In this Review, we draw parallels from T cell biology to explore the key features of immune memory in innate lymphocytes, including quantity, quality, and location. We discuss the signals that trigger clonal or clonal-like expansion in innate lymphocytes, and highlight recent studies that shed light on the complex cellular and molecular crosstalk between metabolism, epigenetics, and transcription responsible for differentiating innate lymphocyte responses towards a memory fate. Additionally, we explore emerging evidence that activated innate lymphocytes relocate and establish themselves in specific peripheral tissues during infection, which may facilitate an accelerated response program akin to those of tissue-resident memory T cells.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Linfócitos , Imunidade Adaptativa , Células Clonais
17.
J Immunol ; 211(10): 1469-1474, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37830760

RESUMO

NK cells represent a cellular component of the mammalian innate immune system, and they mount rapid responses against viral infection, including the secretion of the potent antiviral effector cytokine IFN-γ. Following mouse CMV infection, Bhlhe40 was the most highly induced transcription factor in NK cells among the basic helix-loop-helix family. Bhlhe40 upregulation in NK cells depended upon IL-12 and IL-18 signals, with the promoter of Bhlhe40 enriched for STAT4 and the permissive histone H3K4me3, and with STAT4-deficient NK cells showing an impairment of Bhlhe40 induction and diminished H3K4me3. Transcriptomic and protein analysis of Bhlhe40-deficient NK cells revealed a defect in IFN-γ production during mouse CMV infection, resulting in diminished protective immunity following viral challenge. Finally, we provide evidence that Bhlhe40 directly promotes IFN-γ by binding throughout the Ifng loci in activated NK cells. Thus, our study reveals how STAT4-mediated control of Bhlhe40 drives protective IFN-γ secretion by NK cells during viral infection.


Assuntos
Infecções por Citomegalovirus , Células Matadoras Naturais , Camundongos , Animais , Interferon gama , Citocinas/metabolismo , Interleucina-12/metabolismo , Infecções por Citomegalovirus/metabolismo , Fator de Transcrição STAT4/metabolismo , Mamíferos/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
18.
Nat Immunol ; 24(10): 1685-1697, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697097

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.


Assuntos
Infecções por Citomegalovirus , Viroses , Humanos , Camundongos , Animais , Imunidade Treinada , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Memória Imunológica
20.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131635

RESUMO

Immune cells live intensely physical lifestyles characterized by structural plasticity, mechanosensitivity, and force exertion. Whether specific immune functions require stereotyped patterns of mechanical output, however, is largely unknown. To address this question, we used super-resolution traction force microscopy to compare cytotoxic T cell immune synapses with contacts formed by other T cell subsets and macrophages. T cell synapses were globally and locally protrusive, which was fundamentally different from the coupled pinching and pulling of macrophage phagocytosis. By spectrally decomposing the force exertion patterns of each cell type, we associated cytotoxicity with compressive strength, local protrusiveness, and the induction of complex, asymmetric interfacial topographies. These features were further validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, direct imaging of synaptic secretory events, and in silico analysis of interfacial distortion. We conclude that T cell-mediated killing and, by implication, other effector responses are supported by specialized patterns of efferent force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...