Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308337, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572504

RESUMO

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

2.
Adv Mater ; : e2401931, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573797

RESUMO

Creating a large-scale contactless user-interactive sensing display (CUISD) with optimal features is challenging but crucial for efficient human-human or human-machine interactions. This study reports a CUISD based on dynamic alternating current electroluminescence (ACEL) that responds to humidity. Subsecond humidity-induced luminescence is achieved by integrating a highly responsive hydrogel into the ACEL layer. The patterned silver nanofiber electrode and luminescence layer, produced through electrospinning and microfabrication, result in a stretchable, large-scale, high-resolution, multicolor, and dynamic CUISD. The CUISD is implemented for the real-time control of a remote-controlled car, wherein the luminescence signals induced by touchless finger movements are distinguished and encoded to deliver specific commands. Moreover, the distinctive recognition of breathing facilitates the CUISD to serve as a visual signal transmitter for information interaction, which is particularly beneficial for individuals with disabilities. The paradigm shift depicts in this work is expected to reshape the way authors interact with each other and devices, discovering niche applications in virtual/augmented reality and the metaverse.

3.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38470794

RESUMO

Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.

4.
Sci Bull (Beijing) ; 67(17): 1755-1762, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546061

RESUMO

Ultraviolet (UV) visualization has extensive applications in military and civil fields such as security monitoring, space communication, and wearable equipment for health monitoring in the internet of things (IoT). Due to their remarkable optoelectronic features, perovskite materials are regarded as promising candidates for UV light detecting and imaging. Herein, we report for the first time the excitation-dependent perovskite/polymer films with dynamically tunable fluorescence ranging from green to magenta by changing the UV excitation from 260 to 380 nm. And they still render dynamic multi-color UV light imaging with different polymer matrixes, halogen ratios, and cations of perovskite materials. The mechanism of its fluorescence change is related to the chloride vacancies in perovskite materials. A patterned multi-color ultraviolet visualization pad is also demonstrated for visible conversion of the UV region. This technique may provide a universal strategy for information securities, UV visualizations, and dynamic multi-color displays in the IoT.


Assuntos
Compostos de Cálcio , Filmes Cinematográficos , Halogênios , Óxidos , Polímeros
5.
J Phys Chem Lett ; 13(6): 1587-1595, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35139310

RESUMO

Localized excitons are expected to achieve high-performance electroluminescence and have been widely investigated in GaN-based light-emitting diodes (LEDs). Although carbon nanodot (CD) based LEDs have been achieved with the radiative recombination of electrons and holes, localized excitonic electroluminescence has been not reported before. In this Letter, localized excitonic electroluminescent devices have been fabricated using fluorescent CDs as an active layer. The CDs show strong localized excitonic yellow emission with a fluorescence quantum yield of 76% and Stokes shift of 2.1 eV. The CD-based LEDs present a sub-bandgap turn-on voltage of 2.4 V and a maximum luminance of 60.2 cd m-2, which is the lowest driving voltage among the CD-based electroluminescent devices. Localized centers trap carriers effectively, resulting in sub-bandgap light emission. The current results manifest that localized excitons may furnish a promising approach to boost the development of CD-based LEDs.

6.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33445158

RESUMO

Perovskite solar cells (PSCs) have attracted extensive attention due to their convenient fabrication and excellent photoelectric characteristics. The highest power conversion efficiency (PCE) of over 25% has been realized. However, ZnO as electron transport layer based PSCs exhibit inferior PCE and stability because of the mismatched energy-band and undesirable interfacial recombination. Here, we introduce a thin layer of SnO2nanocrystals to construct an interfacial engineering with gradient energy band and interfacial passivation via a facile wet chemical process at a low temperature. The best PCE obtained in this study reaches 18.36%, and the stability is substantially improved and maintains a PCE of almost 100% over 500 h. The low-temperature fabrication process facilitates the future application of ZnO/SnO2-based PSCs in flexible and stretchable electronics.

7.
Nat Commun ; 11(1): 6207, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277501

RESUMO

Power dissipation is a fundamental issue for future chip-based electronics. As promising channel materials, two-dimensional semiconductors show excellent capabilities of scaling dimensions and reducing off-state currents. However, field-effect transistors based on two-dimensional materials are still confronted with the fundamental thermionic limitation of the subthreshold swing of 60 mV decade-1 at room temperature. Here, we present an atomic threshold-switching field-effect transistor constructed by integrating a metal filamentary threshold switch with a two-dimensional MoS2 channel, and obtain abrupt steepness in the turn-on characteristics and 4.5 mV decade-1 subthreshold swing (over five decades). This is achieved by using the negative differential resistance effect from the threshold switch to induce an internal voltage amplification across the MoS2 channel. Notably, in such devices, the simultaneous achievement of efficient electrostatics, very small sub-thermionic subthreshold swings, and ultralow leakage currents, would be highly desirable for next-generation energy-efficient integrated circuits and ultralow-power applications.

8.
ACS Nano ; 14(4): 4475-4486, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167288

RESUMO

Great successes have been achieved in developing perovskite light-emitting devices (LEDs) with blue, green, red, and near-infrared emissions. However, as key optoelectronic devices, yellow-colored perovskite LEDs remain challenging, mainly due to the inevitable halide separation in mixed halide perovskites under high bias, causing undesired color change of devices. In addition to this color-missing problem, the intrinsic toxicity and poor stability of conventional lead-halide perovskites also restrict their practical applications. We herein report the fabrication of stable yellow LEDs based on a ternary copper halide CsCu2I3, addressing the color instability and toxicity issues facing current perovskite yellow LED's compromise. Joint experiment-theory characterizations indicate that the yellow electroluminescence originates from the broadband emission of self-trapped excitons centered at 550 nm as well as the comparable and reasonably low carrier effective masses favorable for charge transport. With a maximum luminance of 47.5 cd/m2 and an external quantum efficiency of 0.17%, the fabricated yellow LEDs exhibit a long half-lifetime of 5.2 h at 25 °C and still function properly at 60 °C with a half-lifetime of 2.2 h, which benefits from the superior resistance of CsCu2I3 to heat, moisture, and oxidation in ambient environmental conditions. The results obtained promise the copper halides with broadband light emission as an environment-friendly and stable yellow emitter for the LEDs compatible with practical applications.

9.
Nanotechnology ; 31(22): 225202, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31952068

RESUMO

Dynamically regulated coherent light emission offers a significant impact on improving white light generation, optical communication, on-chip photonic integration, and sensing. Here, we have demonstrated two mechanisms of strain-induced dynamic regulation of ZnO lasing modes through an individual ZnO microbelt and microrod prepared by vapor-phase transport method. We systematically explained the dependence on externally applied strain and crystal orientation. Compared with the reduced size of resonant cavity played a major role in the microbelt, the resonant wavelength variation of the microrod under tensile stress is affected by the change in both the cavity size and the refractive index, which tends to antagonize in the direction of movement. It shows that the refractive index can be effectively regulated only when the stress is in the same direction along the c-axis. The results on the linear relationship between the resonance wavelength variation and applied strain imply the capacity of the devices to detect tiny stresses due to the ultra-narrow line width of the cavity mode with a high-quality factor of âˆ¼104. It not only has a positive influence in the field of the modulated coherent light source, but also provides a feasible strategy for implementing color-resolved non-contact strain sensors.

10.
ACS Nano ; 13(5): 5049-5057, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31013417

RESUMO

Realizing dynamic wavelength tunability could bring about tremendous impacts in laser technology, pressure nanosensing, and lab-on-a-chip devices. Here, we demonstrate an original strategy to operate the lasing mode shift through reversible length changes of a CdS nanobelt, which is determined by the direction of piezoelectric polarization. The relationships between the direction of applied strain, the lasing mode shift, and the tunable effective refractive index are elaborated in detail. The correlation between the piezoelectric polarization-induced lasing mode red shift and the blue shift in the wavelength of the lasing mode output caused by the Poisson effect is discussed in depth, as well. Our study comprehensively considers the influence of both the cavity size variations and refractive index changes on the control of the lasing mode and provides a deeper understanding of the strain-induced lasing mode shift.

11.
ACS Nano ; 13(4): 4507-4513, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30875189

RESUMO

Tremendous work has been made recently to improve the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs); the best reported value is now over 23%. However, further improving the PCEs of PSCs is challenged by material properties, device stability, and packaging technologies. Here, we report a new approach to increase the PCEs of flexible PSCs via introducing the piezo-phototronic effect in the PSCs by growing an array of ZnO nanowires on flexible plastic substrates, which act as the electron-transport layer for PSCs. From the piezo-phototronic effect, the absolute PCE was improved from 9.3 to 12.8% for flexible perovskite solar cells under a static mechanical strain of 1.88%, with a ∼40% enhancement but no change in the components of materials and device structure. A corresponding working model was proposed to elucidate the strategy to boost the performance of the PSCs. These findings present a general approach to improve PCEs of flexible PSCs without changing their fundamental materials.

12.
Nat Commun ; 9(1): 244, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339793

RESUMO

Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity. The actualized specific expandable sensor units integrated on a structured polyimide network, potentially in three-dimensional (3D) integration scheme, can also fulfill simultaneous multi-stimulus sensing and achieve an adjustable sensing range and large-area expandability. We further construct a personalized intelligent prosthesis and demonstrate its use in real-time spatial pressure mapping and temperature estimation. Looking forward, this SCMN has broader applications in humanoid robotics, new prosthetics, human-machine interfaces, and health-monitoring technologies.


Assuntos
Fenômenos Mecânicos , Sensação/fisiologia , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Humanos , Umidade , Campos Magnéticos , Mecanotransdução Celular/fisiologia , Microscopia Eletrônica de Varredura , Pressão , Pele/citologia , Pele/ultraestrutura , Temperatura
13.
Adv Mater ; 29(5)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27874222

RESUMO

This study demonstrates significant improvements of ZnO nanowire lasers by the piezophototronic effect. The laser output power can be enhanced by a factor of 4.96, and the threshold voltage can be decreased from 48 to 20 V by applying pressure. The mechanism of the improved performance can be attributed to the enhanced carrier injection and recombination due to the piezophototronic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...